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Abstract. In the classical model of cooperative games, it is considered that
each coalition of players can form and cooperate to obtain its worth. How-
ever, we can think that in some situations this assumption is not real, that is,
all the coalitions are not feasible. This suggests that it is necessary to rise the
whole question of generalizing the concept of cooperative game, and therefore
to introduce appropriate solution concepts. We propose a model for games on
a matroid, based in several important properties of this combinatorial struc-
ture and we introduce the probabilistic Shapley value for games on matroids.
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1. Introduction

A cooperative game is a pair (N,v) of a finite set N of players and a charac-
teristic function v : 2V — IR, such that v(F) = 0. A subset S of N is called a
coalition. This paper is concerned with cooperative games in which the coop-
eration among players is partial. We will consider that there are two rules of
cooperation between players:

* If a coalition may form, then every subset is also feasible, since if the players
that take part in the formation of a coalition have common interests, then
every subset of these players has at least the same common interests.

* Given two feasible coalitions with different number of players, there is a
player of the largest that he can join with the smallest making a feasible
coalition.

For this reason, we will define the feasible coalitions by using combinato-
rial geometries called matroids. The set systems called matroids were intro-
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duced by Whitney [10] as an abstraction of linear independence and the cyclic
structure of graphs. The origin of the actual matroid theory is the work of
Tutte [7] and it has numerous applications in combinatorics and optimization
theory. We refer the reader to Welsh [9] and Korte, Lovasz and Schrader [4]
for a detailed treatment of matroids.

Let us outline the contents. Section 2 treats the essential notions on mat-
roids, such as its properties, its rank function and its basic coalitions (being
maximal feasible coalitions with respect to inclusion of sets). For the sake of
the game theoretic approach, the rank function of a matroid is interpreted as
a classical cooperative game and next, the game theoretic solution concept
called core is defined as the set of optimal solutions of a certain linear pro-
gramming problem in which the rank function of the matroid is involved.
Edmonds [2] showed that the core coincides with the convex hull of the inci-
dence vectors corresponding to basic coalitions of the matroid.

Section 3 introduces the concept of a cooperative game on a matroid as
a real-valued function on the matroid itself. In other words, the characteristic
function of this type of a cooperative game is defined only for feasible coali-
tions arising from the matroid. Similar, but different versions already do exist,
see Faigle [3] and Nagamochi, Zeng, Kabutoya and Ibaraki [5]. The main part
of Section 3 deals with the axiomatic development of the solution theory for
games on matroids. As a matter of fact, we are concerned with the linear-
ity axiom (in the variable being the characteristic function of the game), the
monotonicity axiom (solutions should allocate nonnegative payoffs to players
whenever the utility of coalitions increases in accordance with the inclusion of
coalitions), as well as the dummy player axiom (non-important players receive
their natural solutions). The solutions that satisfy these three axioms are char-
acterized as the so-called quasi-probabilistic values. Such a solution for any
individual player may be interpreted as some expected outcome based on the
player’s marginal contributions for joining the feasible coalitions of the induced
contraction matroid. Another equivalence theorem states that an individual
solution is a quasi-probabilistic value if and only if the solution is decom-
posable as the weighted sum of certain solutions for induced subgames defined
on power sets associated with the basic coalitions of the matroid. The relevant
weights are interpreted as a probabilty distribution over the set of basic co-
alitions of the matroid.

Section 4 introduces the solution concept called Shapley value for games on
matroids, meant to be a generalization of the known Shapley value for classical
cooperative games. The axiomatic approach taken here involves, besides the
linearity and substitution axioms, a probabilistic version of the efficiency and
dummy player property. In this framework, it is supposed that basic coalitions
are formed randomly according to a fixed probability distribution over the set
of basic coalitions of the matroid. As a result of this axiomatic approach, two
explicit formulas for the probabilistic Shapley value of games on matroids are
presented and discussed.

2. Essential notions on matroids

A matroid is a pair (N, ./) consisting of a finite set N and a set .# of subsets
of N with ¢§ € ./ and satisfying the following two properties:
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(M1) If Se # and T = S, then T € 4.
(M2) If S, T € 4 with |S| = |T| + 1, then there exists i € S\ 7 such that 7" U
{ite .

The rank function r : 2N — Z_ of a matroid .# on N is defined by
r(X) :=max{|S|: S X,Se.#} forall X = N. (1)

Notice that S € ./ if and only if r(S) = |S|. The following two theorems (see
Korte et al. [4]) axiomatize matroids in terms of their rank functions.

Theorem 2.1. 4 function r : 2V — Z, is the rank function of a matroid on N if
and only if, for all X, Y < N, the following holds:

Rl 0<r(X) < |X|.
(R2) r(X) < r(Y) whenever X = Y.
R r(XuY)+r(XnY)<r(X)+r((Y).

Theorem 2.2. A function r: 2N — Z . is the rank function of a matroid on N if
and only if, for all X = N and all i, j € N\X, the following holds:

(R1) r(¥) = 0.
(R2) r(X) < r(X u{i}) <r(X)+ L
(R3) If r(X v {i}) =r(X U {j}) =r(X), then r(X U {i, j}) = r(X).

In the setting of the two theorems above, the function r determines uniquely
the corresponding matroid through .# = {S = N : r(S) = |S|}. Elements of a
given matroid are called feasible sets and further, a maximal feasible set (with
respect to inclusion of sets) is called a basic set. Property (M1) implies that all
the subsets of any basic set are feasible sets too and thus, 2% = .# for every
basic set B of the matroid .#. It is known that all the basic sets have the same
cardinality and thus, |B| = r(N) for every basic set B of the matroid .# < 2V,
Throughout this work we suppose that  J;_ ,{i:ie S} =N.

In addition, the basic sets are of particular interest to determine the opti-
mal solutions of a certain linear programming problem arising from the rank
function of a matroid. Since this paper aims to develop the solution theory
for cooperative games on matroids, we start to interpret the rank function r :
2V — Z., of a matroid as a classical cooperative game (N, r) with player set
N. The rank function indicates the maximal feasible cooperation level between
the players of a coalition. In this context, the solution set of the relevant LP-
problem agrees with the well-known game-theoretic concept called core. The
core of the game (N, r) is defined to be

Core(N,r) := {x e RY : x(N) = r(N),x(S) < r(S) for all S < N},

where x(S) := ), ¢ x; and x(J) = 0. For every set S = N, we define the inci-
dence vector ¢S € RY such that (eS), :=1 for all i e S and (e%), := 0 other-
wise. The following theorem has been showed by Edmonds [2] and provides
one interpretation of the core of a cooperative game induced by the rank func-
tion of a matroid.



336 J. M. Bilbao et al.

Theorem 2.3. Let 1 : 2V — Z, be the rank function of a matroid # < 2V and
B(M) the set of basic coalitions of M. Then

Core(N,r) = conv{e® : Be B(M)}.

Proof. To prove that e® e Core(N,r) for all Be #(.4), consider first that
>jen(€?); = |Bl =r(N) for every Be B(.#). Moreover, »;_s(ef), = |Bn
S| < 7(S) for all S = N. Since the core is convex, conv{e® : Be #(.#)} =
Core(N,r). To prove the reverse inclusion, it suffices to show that the vertices
of the core belong to the set {e® : Be #(.#)}. In view of Theorem 2.1 (R3),
the rank game (N,r) is submodular and hence, by Driessen [1] (the greedy
algorithm for LP-problems with a submodular objective-function), the vertices
of the Core(N,r) are determined by the marginal worth vectors, the compo-
nents of which are composed of the marginal contributions r(S u {i}) — (),
S = N\{i}, of player i € N, in the rank game (N, 7).

Together with Theorem 2.2 (R2’), this implies that any marginal worth
vector y = (;);cy Of the rank game (N,r) satisfies y; € {0,1} for all i e N.
That is, y =5 for some S < N. From ye Core(N,r) we deduce |S|=
> jes¥i <7(S), whereas, by construction, r(S) < |[S|. Thus, r(S) = |S], or
equivalently, S € .#. Moreover, from the efficiency of y we deduce r(N) =
> jen Vi =|S|. Finally, from S e .# and [S| =r(N), we conclude that Se

A (M) and hence y = e for some B e #(.M). O
Let S € /. The contraction 4 /S of S from .# is the new matroid
MIS:={Teldh:TnS=Zand TuSe M}

Then the contraction of a feasible coalition S is a matroid formed with the
feasible coalitions of the initial matroid that do not include any members of S,
whereas its union with S is still a feasible coalition in the initial matroid. In the
particular case of a individual coalition S = {i}, i € N, we use .# /i instead of

) {iY.

Example 2.1. Given the set N = {1,...,n} and any number k, | <k < n, we
define the uniform matroid U} := {S = N : |S| < k}. Coalitions of cardinal-
ity k are the basic coalitions and its rank function r: 2" — Z_ is given by
r(X) = min{k, |X|} for all X = N. With reference to the uniform matroid U;,
as depicted in figure 1, the core of the corresponding rank game is the convex
hull of the vectors (1,1,0), (1,0,1), and (0,1, 1).

Example 2.2. For any i, j € N, with i # j, we define the opposition matroid
M,(il|j) :={S = N : {i,j} £S} being the largest matroid which excludes co-
alitions containing both players i and j. There are two basic coalitions N\{i}
and N\{j}. Its rank function r:2% — Z, is given by r(X) = |X]| if X €
M,(i||j) and r(X) =|X|—1 otherwise. Players 2 and 3 are called istmus
players because they belong to every basic coalition of My(1]/4).

Example 2.3. Given a graph G = (V, E), where V is the vertex set and E is the
edge set, the graphic matroid M (G) consists of all subsets of E that contain no
cycle of G. Maximal forests of G are the basic coalitions of M(G) and its rank
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{}

Fig. 1. The uniform matroid U3

function is given by r(X) = |V(X)| — k(X) for all X = E, where V(X)) is the
vertex set of the spanning forest of X and k(X) its number of connected
components.

3. An axiomatic approach to quasi-probabilistic values

A cooperative game on the matroid .# is defined to be a real-valued function
v: ./ — R satisfying v() = 0. In words, a cooperative game on a matroid
represents an evaluation of the potential utility of any feasible coalition,
whereas non-feasible coalitions are totally ignored because such coalitions are
supposed not to be formed anyhow. For instance, in the context of the uni-
form matroid U}!, the n participants in a trip are only interested in measuring
the utility of any group consisting of at most k persons because of the limited
number of seats in various identical minibuses to be used for transportation
during the trip.

Let I'(.#) denote the set of all cooperative games on the matroid ..
Clearly, I'(.#) is a vector space. An individual value for player i on I'(.#) is
defined to be a function y;: I'(.#) — R. For every game ve I'(.#), the
value ,;(v) represents an assessment by player i of his gains from
participating in the game v. We consider the following three axioms for an
individual value ; on I'(.#).

(1) Linearity: y;(aw + pw) = of;(v) + pip;(w), for all v,we I'(.4) and all o,
peR.

(2) Ai~dummy player property (4; € [0,1] is the rate of participation by player
i): If player i is a dummy in the game v e I'(.#), that is v(S U {i}) —
v(S) = v({i}) for all S e .#/i, then y;(v) = Lv({i}).

(3) Monotonicity: If ve I'(#) is monotone (v(S) <uo(T) for all S,T e .#
with S < T) then y,(v) > 0.

Theorem 3.1. Let .4 <2V be a matroid and , : I'(.4) — R an individual
value for player i € N. If J; € [0, 1] is the rate of participation by player i, then
the following two statements are equivalent.
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Fig. 2. The matroid M,(1||4) and the contractions of 1 and 2

(i) ¥, satisfies the linearity, monotonicity, and 1;-dummy player properties.
(ii) There exists a collection {pg>0:Se.#[i} with 3 s  ,,;ps= 4 such
that, for all ve I'(M),

Vilo) = D pslo(S U {i}) —o(S)]. (2)

Se.]i

Proof. The implication (if) = (i) is obvious. To prove the converse implica-
tion, we first define, for every nonempty 7 € .#, the unanimity game ur :
A — R and the identity game ot : 4 — R as follows:

1 ifS=2T 1 ifS=T
S) = or(S) =
ur(S) {0 irspr o1 {o if ST

Note that ur =3 g. 4.557) 9s for all nonempty 7' € .7/ Suppose y; sat-
isfies the linearity, monotonicity, and A;-dummy player properties. Let &; :
I'(#) — R be defined, for all v e I'(.#), by

Bi(v) == Y YilGsop) (S v {i}) = u(S)): 3)

Se.]i

We claim y; = @;. Since both values are linear on I"(.#) and the collection
{ur: TeM,T # &} of unanimity games forms a basis of I'(.#), it suffices
to establish that Y, (ur) = @;(ur) for all nonempty T € /.

First, let T € .4, T # &, such that i ¢ T. Note that ur(S v {i}) = ur(S)
for all Se .#/i and hence, by (3), @;(ur) =0 whenever i ¢ T. Moreover,
ur({i}) =0, s0i¢ T is a dummy player in the unanimity game u7 and thus,
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by the /;,-dummy player property for y;, we obtain that y,(ur) = dLur({i}) =
0ifi¢ T.So far, Y,;(ur) =0= P;(ur) if i ¢ T.

Secondly, let T € .4 such that i € T. From (3) and the linearity property
for ;, we deduce that the following holds:

Di(ur) = Z ¥i(0soqiy)ur(Su{i}) = Z ¥ (0s)

Se.]i {Se.#:S=2T}

=w,~< > 6s> =, (ur).

{Se.#:S=2T}

We conclude that y,(u7) = @;(ur) for all nonempty T € .#. Hence, by lin-
earity, Y, = @;. Next, we define p := ¥ (0suqiy) for all S e .7 /i. Further, we
have upp (S U {i}) —ugy (S) = 1 = ug;y ({i}) for all S e .#/i. That is, player i is
a dummy in the unanimity game u; and thus, by the 4;,-dummy player prop-
erty for y; and (3), we obtain that 4; = Zugy ({i}) = ¥ (uy) = dXsc /i Ps-

It remains to establish that pi > 0 for all S e .#/i. For every S e ./,
S # ¢, we define the monotone game (g : .# — R by (g := ug — dg, that is
(s(T):=1if T 2 S and {s(T) := 0 otherwise. Let S € .#/i. By the monoto-
nicity of the game (g, we obtain that {s(7 U {i}) — {s(T) € {0,1} for all T €
A /i and moreover, {s(T v {i}) — {s(T) = 1 if and only if S = T'. Hence, by
(3), ¥;({s) = p% and by the monotonicity property for y;, we conclude that
pi=;((s) =0 forall Se.#/i O

In fact, the above theorem generalizes the characterization by Weber [8] of
so-called probabilistic values, which are defined as a particular case of the new
concept, as given by (2), applied to a free matroid.

Definition 3.1. Let .# = 2V be a matroid. An individual value y; : I'(.#) — R
Jor player i € N is said to be a Ai-quasi-probabilistic value if there exists a col-
lection {ps >0:Se.d]i} satisfying 3 g 4 Ps =4 such that, for all ve
),

ilo) = Y pslo(S (i) —o(S)). 4)

Se.]i

The following equivalence theorem states that, given a matroid .#, an indi-
vidual value can be classified as a quasi-probabilistic value on I'(.#) if and
only if it is decomposable as a weighted sum of certain probabilistic values on
free matroids induced by the basic coalitions of the given matroid. For every
Se, et Bs(M):={BeB(M):S < B} represent the set of basic coali-
tions containing the feasible coalition S. Particularly, we write %;(.#) corre-
sponding to individual coalitions S = {i}, ie N.

Theorem 3.2. Let ./ < 2V be a matroid. Let \y; : I'(#) — R be an individual
value for player i € N and 2; € [0, 1] the rate of participation by player i. Then
the following two statements are equivalent.
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(i) V¥, is a A;~quasi-probabilistic value. A
(ii) There exists a probability distribution P' on the set B(M) such that

P'(B) = i,
Be#,(M)
and for every B € Bi(M), there exists an individual probabilistic value y} :
I'(28) — R such that, for all ve I'(M),
Vi)=Y PUBY/(va), (5)
Be A (M)
where vg is the restriction of the game v to 25.
Proof. Fix i e N. Suppose P’ is a (yet unspecified) probability distribution

on A(.4) and suppose, for every B € %,(./), that y? : I'(2%) — R is an indi-
vidual probabilistic value defined, for all w e I"'(28), by

Wi = D phow(T U {i}) —w(T)], (6)

{T<B:i¢T}

where {pj ; > 0: T < B,i ¢ T} is a set of (yet unspecified) numbers such that
> (repi¢r) Pp,r = 1. Then, we obtain, for all ve I'(.#), the following chain
of equalities:

P'(B)y (vs)
BeB;(M)
= > Pi(B)( > pé,T[v(Tv{i})—v(T)])
BeB;(M) {T<Bi¢T)

( P'(B)py r> [o(T v {i}) — o(T)]
Tedl]i \ BeBr g (M)

S pile(T O (i) — (7)),

Te /i

where the interrelationship between the coefficients is determined as follows:

pr= >, PBpss (7)

Be By (M)

for all T € .4 /i. The equality (7) yields the following result:

Z Pé = Z Z Pi(B)Pé,S)

Se.]i Se.]i (Be,%u{,-) (M)

= ¥ Pi(B)( >, pé.s)= > PB).

Be B;(M) {ScB:i¢S} BeB;(M)
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The implication (if) = (i) follows immediately from the definition of p}. by
(7), provided that P'(B) and pj  are given for all Be By (3 (4), i¢ T. In
order to prove the converse implication, it suffices to solve the equation (7) for
the variables P/(B) and p}, ;, provided that p}. are given for all T e .4 /i, and
taking into account the two additional restrictions: » (7 c g4\ Pp r = | and
> pesu) P'(B) = 1. For that purpose, define bs := [#s(.#)| for every S e ./
and further,

i
Pi(B) == st for all B e B;(.M),
(scBi¢s) Sl

i Pr .
=—""—— foral Be Bromn(M),i¢ T.
pB,T bTU{[}Pl(B) TU{ }( )
By construction, the equation (7) is solved and } /7cpiap per =1
Finally, it follows that the remaining restriction >, , P'(B) = 1 can be
met trivially due to the following chain of (in)equalities:

i
Be B, Be#,(i) \{ScBi¢Ss} SOt}

D

Sed/i Be Ay (M) bsoiiy
= > ps=r<1
Sed/i

This completes the proof. Notice that if P/(B) = 0, for some B € %;(./),
then we can use any probabilistic value on 22, as definition of ‘P,.B . O

Definition 3.2. Let ./# <= 2V be a matroid. A group value y = (Y;);.y on I'(M)
is said to be a basic value if there exists a probability distribution P on B(M)
such that every component \,, i € N, is of the following form:

Vi)=Y PBW/(vs), forallvel (M), (8)
BeBi(M)

where W : ['(28) — R is an individual probabilistic value and B € RB;(.).

Remark 3.1. Clearly, by Theorem 3.2, every component of a basic group value
is a quasi-probabilistic value. The converse statement, however, is not true.
That is, if each component of a group value is a quasi-probabilistic value, then
the group value is not necessarily a basic value. For instance, consider the
opposition matroid

M;(1|2) = {, {1}, {2}, {3}, {1,3},{2,3}}
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and thus, 8(.#) = {{1,3},{2,3}}. In addition, consider any group value y =
(Y1), c > the components of which are quasi-probabilistic values such that

Ui (v) = piylv({1,3}) — o({3})],
¥3(v) = piy l({1,3}) — o({1})],

for allv € I'(.), where 0 <p{3} <landO <p{1} < 1. We claim that, for every
0<p! 3y < 1 and p{l} = 1, the quasi-probabilistic group value i can not be
interpreted as a basic value of the form (8). For that purpose, suppose there

exists a probability distribution P on #(.#) such that (8) holds. In particular,
for all v e I'(.#), the following holds:

Ui () = P13 (o 3)
= PH{1,31) [ 31, ({1, 3}) = o({3D] + by 3y, o0 ({11)];
V(o) = PUL3HYE Y (o 5)) + PU2. 3005 (0 )
= PU{L 3113y, oy o1, 33) = o({ID)] + 23y 3y, 0 ({3})]
+ P({2,3D) [P}y, 13 [0(£2,3}) = v({21)] + P 3y, 52 ({3})]-

From the two expressions for y,, we deduce p! (.31, = 0-In fact, we apply (7)
by looking at 0 = p/; = P({1, 3})17{1 32 where P({1,3}) # 0 because of the

assliiimption p{3} > 0. Thus, p{1 g =1- Pi1,3},@ = 1 and consequently, (7)
yields

P{13} = P({1a3})P{11,3},{3} = P({1,3}).

Finally, from the two expressions for ¥ (or once again (7)), we deduce that
1= p{l} = P({1,3}) p{1 341 The resulting equality, however, is in contra-

diction with 0 < p?, sy =1and 0< P({1,3}) < 1. Therefore, the given
quasi-probabilistic group value is not a basic value.

4. The Shapley value for games on matroids: the static model

Recall that the solution part of classical cooperative games on the free mat-
roid .# = 2" is based on the assumption that the grand coalition N forms and
thus, solution concepts aim to prescribe equitable divisions of the associated
worth v(N) among the players of any game (N,v). In the context of any
non-trivial matroid .# # 2%, the fullest measure of cooperation among play-
ers is supposed to take place within feasible coalitions that are as large as
possible (with respect to inclusion of sets). Thus, for every basic coalition
B e #(), the family 258 of feasible coalitions is called a cooperation area for
the members of B only. The basic coalitions of a matroid, however, are not
necessarily disjoint and so, two basic coalitions with at least one mutual
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member can not be formed at the same time. This section is devoted to a
model based on a probabilistic approach to the formation of basic coalitions.
In other words, this static model involves probability distributions over the
various cooperation areas (basic coalitions) and according to this random
process, each feasible coalition interacts within its relevant cooperation areas
with certain probabilities. Since it is supposed that a basic coalition forms
randomly, we will deal with an arbitrary probability distribution over the set
of basic coalitions denoted by

P(M) = {P e (R,)?) P(B) = 1}.

BeB(M)

Definition 4.1. Let .# < 2V be a matroid and let P € 2(.) a probability dis-
tribution over B(.M). For every S € M, the probabilistic participation influence
wP(S) of S within the cooperation areas of M (with respect to P) is given by
the sum of the probabilities of basic coalitions containing S,

wf(S):= Y P(B) forall Se.u. (9)

BeBs(M)

Particularly, for all P e 2(.4), we call w? := (wP({i})),.y € R" the prob-
abilistic participation influence vector (with respect to P), the components of
which are the probabilistic participation influences of individuals within the
cooperation areas of the matroid. The next result asserts that the set
consisting of all probabilistic participation influence vectors coincides with the
core of the rank game (induced by the rank function of the matroid .#). In
other words, every core-allocation of the rank game represents in a natural
and unique manner the (probabilistic) rate of participation by individuals
within the cooperation areas of the matroid. Obviously, the probabilistic rate of
participation by any istmus player (who belongs to every basic coalition)
equals one.

Proposition 4.1. Let ./ < 2V be a matroid and r : 2V — Z_._ its rank function.
Then Core(N,r) = {wf : Pe 2()}.

Proof. By Theorem 2.3, every x € Core(N,r) can be written as a convex
combination of the incidence vectors e?, B e #(.#). Then, there exist non-
negative numbers P(B), Be #(.4), with 3 p_,, P(B) =1 such that x =
Y peacu) P(B)e? =w” or equivalently, x; =Y 5, P(B) =w'({i}), for
allie N. U

Now we are in a position to state our main theorem concerning the exten-
sion of the well-known Shapley value for classical games to games on mat-
roids. In an axiomatic way we introduce a basic value on I'(.#) constructed
by the classical Shapley values on I"(25), for all B € #(.#), and a probability
distribution P € Z(M):

Shf(vy=Y_ P(B)Shf(vs), forallveI'(.#)andallieN,
Be#;(M)
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where Sh® = (Sh¥),_  is the classical Shapley value on I'(25), B e %(.#). The
axiomatic approach to the extended Shapley value involves four axioms, of
which the linearity is formulated in a classical manner, the substitution axiom
is applied to some substitutes in unanimity games, whereas the dummy player
and efficiency axioms are formulated with reference to a given probability
distribution over the cooperation areas of the considered matroid.

Theorem 4.2. Let ./ <2V a matroid and let P e (M) a probability distri-
bution over B(M). There exists a unique group value Yy = (Y,);.y on I'(M)
that satisfies the following four axioms:

(1) Linearity: For every i€ N, y;(aw + pw) = op;(v) + pp;(w) for all v,we
(M) and o, p € R.

(2) Substitution apply to unanimity games: For each T € .M we have ,(ur) =
;(ur) for every pairi,jeT.

(3) P-dummy player property: ,(v) = wt ({i})v({i}) for every dummy player i
in the game ve I'(M).

(4) Probabilistic efficiency: >y i(0) = 3 peyu) P(B)U(B), for all ve
r#).

This unique group value Sh* = (ShY),_y is called the probabilistic Shapley
value on I'(M) and we present two explicit formulas for it:

ShE(e) = WHTAD ) - o(1) (10)
P& () = T (')
S = Y PBISK(us) (an

Be (M)

Sor all ve I'() and all i € N, where Sh® = (Sh5),_p represents the classical
Shapley value on I'(28), Be B(M).

Proof. In order to prove the uniqueness part, suppose a group value s satisfies
the linearity, substitution applied to unanimity games, probabilistic efficiency,
and P-dummy player properties. Consider, for every T € .#, T # &, the una-
nimity game ur : .4 — R as defined at the beginning of the proof of Theorem
3.1. Recall that every i ¢ T is a dummy player in the game u7 and thus, by the
P-dummy player property for y;, it holds that ,(uzr) = w?({i})ur({i}) =0
whenever i ¢ T. Further, by the substitution property for , ¥, (ur) = y;(ur)
for every pair i,j € T. Thirdly, by the probabilistic efficiency property for , it
holds >~y Wilur) = > pc pu) P(B)ur(B) = 236937(,///) P(B) =w"(T). So
far, we obtain that the group value s for every unanimity game uy, T € 4,
T # &, is uniquely determined by:

w?(T)
lﬁj(”T) = |T‘
0, ifi¢T.

, ifieT



The Shapley value for games on matroids 345

Because the set {uy: T € 4, T # Z} of unanimity games forms a basis
of I'(.#) and y is supposed to be linear, we conclude that the group value
is uniquely determined on I'(.#) by the four axioms involved.

In order to prove the existence part, we first show that formula (10) agrees
with the alternative formula (11). Recall that, for every B € #(.#), the classi-
cal Shapley value Sh® = (ShP),_, on I'(28) is given as follows:

SHB (") = : | (T o (i) —o'(T))

{T<Bi¢T} (‘B‘ - |T|)(\‘$l\

for all v’ € I'(28) and all i € B.
By the above equation and |B| = r(N) for every B € #(.#), we arrive, for
every v e I'(.#) and all i € N, at the following chain of equalities:

P(B)Sh¥(vp)
Be B:(M)
1
= P(B) (T U {i}) — o(T)]
e (%)
[o(T U {i}) — o(T)]
= P(B)
Z/ (»Z”u ) (181170 (}7)
wP (T U {i})

(T u{i}) —o(T)].
re)i(r(N) —|T]) (rl(gl))

Thus, (10) is fully equivalent with (11). Clearly, by (10), the probabilistic
Shapley value Si” is linear on I'(.#). By (12) the relevant substitution prop-
erty holds because the probabilistic Shapley value for a unanimity game, ug,
is the equitable allocation of the probabilistic participation influence of S
between the players of S.

With the aid of (11) and the classical efficiency of the classical Shapley
value on free matroids, we are able to establish the probabilistic efficiency
property for the probabilistic Shapley value Si” as follows:

> Shi(v) = Z( > P(B)Shf(v3)>

ieN ieN \ Be (M)

=y P(B)(ZSh,-B(vB)>= > P(B)u(B),

Be (M) ieB

for all ve I'(#). For the sake of the P-dummy player property, suppose
player i is a dummy in v e I'(.#). That is, v(S U {i}) — v(S) = v({i}) for all
S e #/i. In particular, for every Be %;(.#), we have v(Su {i}) —v(S) =
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v({i}) for all S = B with i ¢ S. In words, player i is a dummy in any subgame
vp associated with any basic coalition containing player i. Since the classical
Shapley value on free matroids satisfies the classical dummy player property,
we arrive at the P-dummy player property for the probabilistic Shapley value
Sh¥ as follows:

Shf(v)= Y PB)SKE(s)= > PBw({i}) =w"{i})e({i}).
Be#,(.1) Be B,(.1)

An alternative proof of the P-dummy player property for the probabilistic
Shapley value Sh! proceeds as follows. From (10), we derive that, for every
dummy player i in a game v € I'(.#), the following holds:

wh(s v {i})
sea)i(r(N) — |S|)("‘<;V‘>

Sht(v) = ) (S u{i}) —v(S)]

' wf(Su{i}) Ww? ({i
= o({i}) = o({iH)w"({i}).
22— 15)(1)

In order to prove the last equality, we claim that for all S € .# and all k > |S]|,

wP(T) = (V(N) N |S|>WP(S). (13)

{Te.u:T=S,|T|=k} k18]

Indeed, in view of (9), the proof of (13) proceeds as follows,

wi= > >, PB)
{Te#:T28,|T|=k} {Te#:T2S,|T|=k} Be Br(M)

DU S
BeBs(M) (Te.w:SST<B,|T|=k}

(N =S,
—( k_|s] )w (S).

Z wh(Su{i}) & YireairikicryW (T)

From (13) we deduce

sean) = 1sN() & e —k+ DY)
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This completes the alternative proof of the P-dummy player property for
the probabilistic Shapley value Sh! as given by (10).

Remark 4.1. By (10), the probabilistic Shapley value for games on an arbitrary
matroid represents some kind of an expected value, in that the expected payoff
to every player is composed of the player’s marginal contributions in the game
with respect to feasible coalitions contained in the contraction of the matroid
to the player. We take into account the probabilistic participation influences
of these feasible coalitions enlarged with the player as well as a (classical)
probability distribution arising from the belief that the feasible coalition, to
which the player joins, is equally likely with probability (N )71 to be of any
cardinality #, 0 < ¢ < r(N) — 1, and that all such coalitions of the same car-

-1
dinality ¢ are equally likely with probability ("(N 2‘1) . To be exact, we claim
wl (T U {i})
r< 7 V) = 1T (')

= wP({i}) foreveryieN,

(see the last stage of the proof of Theorem 4.2).

Remark 4.2. By the decomposition formula (11), the probabilistic Shapley
value for games on a matroid is fully determined by classical Shapley values
on free matroids induced by the basic coalitions of the given matroid, taking
into account the probabilities of these basic coalitions. The impact of the
decomposition formula (11) was already illustrated in the proof of Theorem
4.2 in that known properties (like efficiency and dummy player property) for
the classical Shapley value are basic tools to prove similar properties for the
extension of the Shapley value to games on an arbitrary matroid. For the
ongoing research on the Shapley value for games on matroids, this decom-
position formula (11) may be an extremely helpful tool to get knowledge of
particular properties.

Remark 4.3. The probabilistic Shapley value for games on matroids as given
by (10) does not satisfy the classical substitution property. For instance, con-
sider again the matroid M3(1|2) (see Remark 3.1). Given the game v({1}) =
vo({3}) = v({2}) = 1,v({1,3}) = v({2,3}) = 2, the players 1 and 3 are sub-
stitutes in the classical sense since v(S\{1}) = v(S\{3}) for all S e M;(1]2)
with {1,3} = S. By choosing the probabilities P({1,3}) = P({2,3}) = 1, for-
mula (10) yields Sh{ (v) = 1, whereas Shf(v) = 1, although the players 1 and 3
are substitutes in the classical sense.
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