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Abstract. In this paper, we study the position value for games in which partial
cooperation exist, that is based on a union stable coalition system. The concept
of basis is introduced for these systems, allowing for a definition of the position
value. Moreover, an axiomatic characterization of the position value is pro-
vided for a specific class of union stable systems. Conditions under which
convexity is inherited from the underlying game to the conference game, and
the position value is a core vector of the restricted game are provided.
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1 Introduction

In cooperative game theory, partial cooperation assumes that the formation
of coalitions is restricted. Several models of partial cooperation have been
proposed, among which are those derived from communication situations
as introduced by Myerson [4]. This line of research was continued by Owen
[8], van den Nouweland and Borm [6], Borm, Owen and Tijs [1], van den
Nouweland, Borm and Tijs [7], and Potters and Reijnierse [9].

In Myerson’s model, the bilateral relations among the players are repre-
sented by means of an undirected graph and the feasible coalitions are those
that induce connected subgraphs. However, partial cooperation can not
always be modelled by a graph, so the communication model has been gen-
eralized in several directions, for instance towards conference structures by
Myerson [5] and hypergraph communication situations by van den Nouweland,
Borm and Tijs [7].

In this article, we study partial cooperation structures, which satisfy the
following property: Given any two feasible coalitions with a non-empty inter-
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section, the union is another feasible coalition. This type of feasible coalition
systems will be called union stable systems. In the partial cooperation context,
this condition means that if two feasible coalitions have common elements,
these ones will act as intermediaries between the two coalitions in order to
establish meaningful cooperation in the whole group. A particular case of
union stable systems are the communication situations.

Section 2 provides the formal definition of a union stable system, and the
notions of basis and supports. In section 3, we first introduce the F-restricted
games and the conference games. The position value for games on union stable
systems is defined, it is derived from the Shapley value of the conference game.
This value was first introduced for communication situations by Meesen [3],
and later, Borm, Owen and Tijs [1] gave an axiomatic characterization for the
position value on the subclass of communication situations for which the
communication graphs do not contain cycles. In this paper, this axiomatic
characterization for the position value is generalized.

In section 4, the conditions under which the convexity is inherited from the
underlying game to the conference game are investigated. For that, first a
characterization of convexity in cooperative games due to Shapley [11] is
extended. Moreover, we show that under these same conditions the position
value is in the core of the restricted game.

2 On the basis of a union stable system

Definition 1. Let N = {1,2,...,n} be a finite set of players and F <2V a
collection of feasible coalitions. The set system F is called union stable if for all
A,Be F with An B # J it is satisfied that A L B € Z.

A communication situation is a triple (N, v, E), where (N, v) is a game and
(N, E) is a graph. It is easy to see that the collection 7, defined by

={S < N:(S,E(S)) is a connected subgraph of (N, E)},

is a union stable system. Notice that a union stable system can not always
be modelled by a communication situation. For example, let N = {1,2,3,4}
and 7 ={ &, {1},{2},{3},{4},{1,2,3},{2,3,4}, N}. This family is union
stable, but does not coincide with the connected subgraph family of any
graph.

Let % be a union stable family and ¥ = #. We define inductively the
families

g0V =g g =_{SuUT:8,Tecd"V SAT#g} (n=12,..)

Notice that 4 = ¥~V < ¥ = 7, since ¥ = % and .Z is union stable.
The inductive process is finite because # is finite.

Definition 2. Let 7 be a union stable system and let 9 = F. We define the
closure G by G = 4% where k is the smallest integer such that 4%V = 4%

For any S € #, {S} = {S}, the collection % is union stable, and F = Z.
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Example 1. Let N = {1,2,3,4} and consider the union stable family given by:

7 ={{1},{3},{1,2}.{2,3}.{2,4},{1,2,3},{1,2,4},{2,3,4}, N}.
For the collection ¥ = {{1,2},{2,3},{2,4}}, note that

W = {{1,2},{2,3},{2,4},{1,2,3},{1,2,4},{2,3,4}},
9% =g = {{1,2},{2,3},{2,4},{1,2,3},{1,2,4},{2,3,4},N}.

Let & be a union stable system and ¥ = . If ¢ is union stable, there can
be feasible coalitions which can be written as the union of two feasible coali-
tions with a non-empty intersection. So, we can consider the following set:

D(%) ={Ge%:G=AUB, A#G,B#G, A, Be9, AnB+ J}.

Note that D(%) is composed of those feasible coalitions which can be
written as the union of two distinct feasible coalitions with a non-empty
intersection.

Definition 3. Let F be a union stable system. The set B(F) = F\D(F), is
called the basis of F , and the elements of B(F) are called supports of F.

Example 2. Let N = {1,2,3,4} and consider the union stable system

7= {1525 35 {43, {1, 23, {1,3}, {34},
{1,2,3},{1,3,4},{2,3,4},{1,2,3,4}}.

Clearly, the set D(#) = {{1,2,3},{1,3,4},{1,2,3,4}} hence the basis is
B(Z) = {011,020 3}, (41, {12 {13, 3,45, 23,41

By construction, the basis B(#) of # is unique, non-empty if # is non-
empty, and satisfies the following properties.

(a) If & € 7, then & € B(F).

(b) If {j} € Z, for some j € N, then {j} € B(F).

(c) If S € # is a minimal element in (%, <), then S € B(#).

(d) Let Se Z, |S| > 1. Iffor all T €25 N #, |T| € {0,1,|S|}, then S € B(F).

In particular, if S € # and |S| < 2, then S € B(%).

Proposition 1. Let F be a union stable system. The map ¢ : 27 — 27, defined
by 9(9) = % is a closure operator, ie.,

(a) Forall 4 €27, 9 < p(9).
(b) The relation 4 = # = F implies p(9) < ¢(R).
(c) Forall 9 e2”, p(p(%9)) = 9(9).

This result assures that (7, p(27)), where p(27) = {p(¥) : 9 €27}, is a
closure space. From now on the closure space (Z, p(2”)) will be denoted by
(#,—) and the elements of p(27) will be called closed. We can obtain:
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Proposition 2. Let (F,—) be the above closure space, and 4 € 27. Then, % is
closed if and only if 9 is union stable.

Next, we provide two characterizations of the basis of a union stable
system.

Proposition 3. Let & be a union stable system and B(F) the basis of 7. Then
B(F) is the minimal subset of F such that B(F) = Z.

Proof. We first prove that B(#)=%. We have that B(¥) < #, since
B(7) = # and & is union stable. In order to prove the reverse inclusion, we
use induction on the number of elements of feasible coalitions in Z. Clearly,
the minimal elements in (#, <) belong to the basis and hence to B(#). Now,
suppose F e B(#) for all Fe # with |F| <p. Then, given F e % with
|F| = p, we have either F € B(#) or F ¢ B(%). In the first case F € B(F).
Otherwise, F € D(#) and hence, there are two feasible coalitions S, 7T € 7,
S#F, T#F, SNnT # & such that SUT = F. By using the induction
hypothesis, since |S| <p and |T| < p, we have that S,T € B(#), and the
union stability implies that F = S u T € B(%). Finally, we note that B(%) is
a minimal subset of # such that B(#) = % by construction. O

Proposition 4. Let # be a union stable system and G < F union stable. Then,
with ex(9) .= {G € 9 : 9\{G} is union stable} it holds that ex(9) = B(9).
Proof. We first prove ex(¥9) = B(9). As B(%9) =%, 4 is the smallest union
stable system that contains B(%). Let G € ex(%). Then %\{G} is union stable.
If G ¢ B(%), then B(%9) =< 9\{G} < % and hence % would not be the smallest
union stable system that contains B(%).

It remains to prove that B(¥9) < ex(%). For this, let Be B(%). We show
that %\ {B} is union stable. Indeed, let S, T € ¥\{B}, with S T # . Since
% is union stable, SU T € 4. On the other hand, SUT # Bsince SUT = B
would imply B ¢ B(%). Hence, Su T € 4\{B}. O

The closure space (, —) is a convex geometry (see Edelman and Jamison
[2]) since, if ¥ =  is union stable, then ex(¥) = B(9) = 4.

Definition 4. Consider 4 < 2V and let S< N. A set T < S is called a %-
component of S if it is satisfied that T € % and there exists no T' € 4 such that
T<cT 8.

The %-components of S are the maximal coalitions that belong to ¥ and
are contained in S. We denote by Cy(S) the set of the ¥-components of S.
Observe that the set Cy(S) may be the empty set.

Remark 1. Let (N, v, E) be a communication situation and

F ={S <= N:(S,E(S)) is a connected subgraph of (N, E)}.

In this situation, the #-components of any coalition S < N are the connected

components of the subgraph (S, E(S)) and form a partition of S. Moreover,
the collection {B € B() : |B| = 2} consists of the edges of graph (N, E).
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Proposition 5. The system F < 2V is union stable if and only if for any S = N
such that Cz(S) # &, the #-components of S form a partition of a subset of S.

Proof. Let Z be union stable. Let S!, S2, S! # S?, be maximal feasible coa-
litions of S. If S' N S? # ¥, then S S e F since & is union stable and
S' U 8% = S. This contradicts the fact that S! and S? are #-components of S.

Conversely, assume for any S such that C#(S) # ¢, that its #-components
form a partition of a subset of S. Suppose that & is not union stable, then
there are A, Be #, with A n B # & and A U B ¢ . Hence, there must be an
F~component C; € Cz(Au B), with 4 < C; and an F-component C, €
Cz(A v B), with B < C; such that C| # C,. This contradicts the fact that the
Z-components of 4 U B are disjoint. O

Notice that in general the #-components of S do not form a partition of S,
but if & is a union stable system such that {i} € 7, Vi e N, then they do.
Now, some relations between Z-components, feasible coalitions, and supports
of a union stable system are studied, which are used in the next sections.

Proposition 6. Let F be a union stable system and B(F) its basis. Then

(@) If N ¢ 7, we define the partition {#1,%>,...,%B,} of the basis B(F) by
%; ={BeB(F):B<N;, Nie C#(N)}. Then, for all Be %:, B' e 3,
withi #j, 1 <i,j <p, we have BnB' = (.

(b) Let # < B(F), # < B(F) such that for all Be€ . and for all B' € ¢, we
have BN B' = (. Then ~

(i) Forall Se . and forall S'e #,SnS' = .
i) Fuf=J0 4.
(ii) Cys (N) = CAN) U C4(N).

Proposition 7. Let F be a union stable system and B(F) its basis. Let F € &

with |F| > 2. Then, F can be written as a union of supports of size at least two.

Proof. It is clear that F is a union of supports B;, i € I, with non-empty inter-
sections. If | B;| = 1, there is By, k € I, k # j such that Bk N B; # &, and hence
B; = By and |By| > 2. Therefore F can be written as a union of supports of
size at least two with a non-empty intersection. |

3 The position value: properties and axiomatization

We now consider the Z-restricted game and the conference game, derived from
a cooperative game and a union stable system .

Definition 5. Let (N, v) be a cooperatlve game in coalitional form and F < 2V
a_union stable system. The F-restricted game v” :2V — R, is defined by

07 (8) = recy (s v(T)-

The Z-restricted game measures the economic values of the coalitions
assuming that the entire cooperation structure given by . can be considered.
Thus, the Z-restricted game focuses on the role of a player in creating eco-
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nomic possibilities and establishing meaningful communication among the
players.

Definition 6. Let (N,v) be a cooperative game and F < 2V a union stable
system. Let B be the basis of F and € = {Be€ % : |B| > 2}. The conference
game is the game (€,v%) where v : 2% — R, is defined by v* (/) = v (N).

The game (%, v%) is well defined since for each .o/ < %, its closure .o/ is a
union stable system. The conference game measures the economic value of the
grand coalition when specific parts of the cooperation structure are consid-
ered. Note that if the game (N, v) is zero-normalized, i.e., v({i}) = 0 for all
i€ N, then v* (%) = v*(N) = v” (N).

Remark 2. Let (N, v, E) be a communication situation. The family %, defined
by # ={S < N:(S,E(S)) is a connected subgraph of (N, E)}, is a union
stable system. The two above definitions extend the point game and the arc
game respectively. The arc game was introduced by Borm, Owen, and Tijs [1],
and for this situation we have that € = {{i,j} : {i,j} € E}.

A union stable cooperation structure is a triple (N,v,#) where N =
{1,...,n} is the set of players, (N,v) is a game v: 2" — R with v(g) = 0,
and Z a union stable system. For convenience, we assume from now on that
the underlying game (N, v) is zero-normalized.

The position value for graph communication situations was first in-
troduced in Meesen [3] and studied in Borm, Owen and Tijs [1]. This value
was extended to hypergraphs communication situations in van den Nouwe-
land, Borm and Tijs [7]. Now, this value will be defined in a union stable
cooperation structure, by assigning to each support its Shapley value in the
conference game and then dividing the value of each support equally among
its participants.

Let (N,v, %) be a union stable cooperation structure. On ¥ = %, we have
defined the game (%, v%) that is called the conference game. Therefore, we can
consider the Shapley value associated to the game (%, v%), ®(%,v%) e R”.

Definition 7. Let (N,v, %) be a union stable cooperation structure. For i € N
the position value 7;(N, v, F) is given by

1 @
ni(Navv'g;) = Z E¢C((€’U'§)7
CE%,‘

where €; = {C € € : i € C}, denotes the set of all supports with at least two
players in which i participates.

Example 3. Let N = {1,2,3,4} and # = {{1},{1,2,3},{2,3,4},N}. Then
# = {{1},{1,2,3},{2,3,4}}, and % = {{1,2,3},{2,3,4}}. Let v:2" = R
be the game defined by v(F) =0, v(S) = |S| — 1, for all non-empty S = N.
Thus, v” (S) = |S| — 1, if Se€ .#, and v” (S) = 0, otherwise. The conference
game is
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=L o C,/(N) v (f)
{{1,2,3}} {{1,2,34} {{1,2,3}} 2
{{2.3,4}} {{2,3,4}} {{2.3,4}} 2
{{1,2,3},{2,3,4}} | {{1,2,3},{2,3,4},{1,2,3,4}} | {{1,2,3,4}} 3

The Shapley values are @ ,3(%, %) = @(34(%, %) = 3/2, hence the
position value is n(N,v, #) = (1/2,1,1,1/2).

The set of all union stable cooperation structures on N will be denoted by
USYN = {(N,v,Z) : Z is union stable}. An allocation rule on US" is a map y
that assigns to each union stable cooperation structure (N, v, #) a payoff
vector, (N, v, #) € RY which is component-efficient and component-dummy:

(1) For all (N,v,#)e USN, M e C#(N), we have >, ., 7:(N,v,7) =
v(M).
(2) Foralli¢ UMeC,/y(N)M’ we have y,(N,v, 7 ) = 0.

In order to prove that the position value is an allocation rule, we need the
following result.

Lemma 1. Let (N,v, %) be a union stable cooperation structure with N ¢ F
and (€,v%) the associated conference game. Define the partition {%\,%,,. ..,
Dyt of €by 2 ={De%:D<N;, Nie C#(N)}. Then v® =31 v7, where
the games (€,v”") are defined by v?i(/) = v%(of D), for all o/ <,
I <i<p.

Proof. If o/ < €, then

p p p

o(M)| = Zv%}(&/m ) = Zv%(&f).

—(N) i=1 i=1

I
g
g

The equality in the second line follows directly from proposition 6 (b)

(ii). U
Theorem 1. The position value . : USY — RY  is an allocation rule.

Proof. We first prove that the position value satisfies component-dummy.
If i¢ ) MeCa( N)M, this player is not in any feasible coalition. Therefore

¢ = & and 7;(N,v, #) = 0, by definition.
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To prove component-efficiency, let M € C#(N). Then either |M| =1 or
M| > 1.1If [M| =1, then M = {i} and 4; = &J. Hence, >, ,, mi(N,v,7) =
0 = v({i}), since v is zero-normalized. If |M| > 1, then &; # ¢, for all i € M.
Moreover as M € Cz(N), denoting all basis elements which are contained in
M by By, k € K, we have M = UkeKBk' Hence, if i € M, then €; = {Bi};.c k-
Suppose on the contrary that C € €; and C # By, for all k € K. Then, we have
Cn (N\M) # . Moreover, since i € M n C, it follows that M U C € Z, but
this contradicts that M € C#(N). Therefore, applying lemma 1 and using the
properties of the Shapley value:

S w0, 7 Z[quﬁc 6 ]
ieM ieM|Ce%,
! 4
- Z |Bk|m @Bk((g’y )

{{Bi}iek:|Be| =2} k

= Z ¢Bk ((67 U(g)
HBr}kex:Brl =2}

= Y 0607 =0 ({Bi}ex)
HUBrtee:IBel =2}

= 0" ({Bibkex 0 Zk) = 0" ({Bibicx) = v(M). O

Definition 8. An allocation rule y : USY — RY is additive if y(N,v+w,F) =
P(N,v,F) +y(N,w,F), for all (N,v,F),(N,w,F) e USN.

Definition 9. The support H € € is called superfluous for (N,v,7) e USN if
v8(t) = v (A\{H)}), for all o7 < €, i.e., if H is a null player in the conference
game. An allocation rule y: US N IRN has the superfluous support
property if y(N, v, 7) = y(N,v, B\{H}), for all (N,v, F) € US" and for every
superfluous support H € € for (N v, 7).

Theorem 2. The position value 7 satisfies additivity and the superfluous support
property.

Proof. Additivity follows directly from the additivity of the Shapley value. Let

(N,v,7)e USN. Let H e % be a superfluous support. We have to prove
n(N,v,F) =n(N,v,8\{H}). For each i € N, by definition

— 20 ICI

Ce%;

m(N 0, AHD = é| G\ (HY, ),

Ceb\{H)}

If i € H, we can deduce
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1

4 1 73
n(N,v, F) = Z ﬁ(pC((gaUg) +H@H(fg,yd),
Ce%:\{H}

where @y (%,v%) = 0, since H is a superfluous support and hence a null player
in the conference game (%, v*). Therefore, for alli e N,

1
m(No, F) = Y o ®@c(@,0).
Ce%\{H} €l

This implies that it suffices to prove that @¢(%,v%) = ®¢(¥\{H}, v\ 1},
for all C € ¥\{H}. Applying the Shapley formula,

P60 = Y A NP) o (A(CD)
{9<c4:Ces}

= > HD)(F) =0 (S CY)]
{Y<¢:CeS HeS}

+ > WA (F) = (T,
(9<¢:Ces H¢S)

where (&) = (s — Dl(c — s)!/cl, s= ||, ¢ = |%|. To each coalition ¥ = ¥
which contains the superfluous support H corresponds — when H is deleted — a
coalition which does not contain it, and this relation is bijective. Therefore,

P (,0°) = > HA W (S\HY) = o (S{CH\{HD)]
{Y<%:CeS HeS}

+ > W) = v (\{CY)]
{9Y<4:Ce S H¢SY

= > (S V{HY) + () (F) = (S\{C})]
(9<%:Ces H¢ S}

-y b lﬁfi]ﬁ — D) - o (0]
{7<\{H}:Ces) '

* A

= (c— 1)'

{(F<6\[H}:Ce s}
x [ () — s (\{C}))
— B (@\{H}, 0\,

Note that v*(%) = v\ 1} () because & = 6\ {H}. O



230 E. Algaba et al.

Let (N,v,7) be a union stable cooperation structure. The influence of a
player i is given by I;(N,v, #) = Y ¢ 1/|C].

The triple (N,v, #) e USY is called supporl anonymous if there exists a
function f*:{0,1,...,|¢|} — R such that v" () = f(|]), for all o =,
i.e., if the conference game (%, v*) is anonymous.

An allocation rule y : USY — R¥ has the influence property if for each
(N,v,7) e USV that is support anonymous there exists an « € R such that
vi(N,0,7) =al;(N,v,7), forallie N.

So, if the value of the grand coalition only depends on the number of
supports that are present, the payoffs to the players are proportional to its
influence.

Theorem 3. The position value 7 satisfies the influence property.

Proof. Consider (N, v, #) € USY that is support anonymous This means that

the game (%, v%) is anonymous, hence @¢(%,v%) = v*(%)/|% é.
Thus, for all i € N, we have
=Y = =D e it @)
& |C| A
v (%) 1 0%(%)
= T Il(Na v, ﬁ)
W 270 Tl
We may conclude with the choice of « = v*(%)/|%]|. O

The following example illustrates the influence property of the position
value in a union stable cooperation structure.

Example 4. Let N = {1,2,3,4} and let (N,v, %) be the triple as considered
in Example 3. Then, the influence I = 1/3 since €, ={{1,2,3}}, L=
L =2/3, since 4, =%5={{1,2,3},{2,3,4}}, and I, =1/3, since G4 =
{{2,3,4}}. So, I(N,v,7) = (1/3,2/3,2/3,1/3). In this case, (N,v,#) is a
support anonymous system. Indeed, let f:{0,1,2} — IR be such that
f(0) =0, f(1) =2, and f(2) = 3, then v*(#) = f(|.#|), ./ < . The position
value is n(N,v, #) = 3/2(1/3,2/3,2/3,1/3), where the number « = 3/2, as it
was shown in the proof of theorem 3.

Lemma 2. Let # be a union stable system, such that the expression of each non-
unitary feasible coalition as a union of non-unitary supports is unique. If S =
;e Si- and T = UjEJT/- with S;, T; € €, for all i,j, then S = T if and only if
{Si}iel = {Tf}jeJ'

Proof. Let S = T. If {S;},.; is not contained in {T; }]eJ, then there is Sy,
k eI, such that Sy # T;, for all je J. Hence, T = U}EJ U;eJT ) U Sk
since Sk cScT, and consequently, the expression of 7" as a union of sup-
ports is not unique in contradiction with the hypothesis. The converse is
obvious. O
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Next, we obtain an axiomatic characterization of the position value on the
class of the union stable cooperation structures (N, v, %) such that:

(1) Forall S,T € #, with [SNT| >2we have SN T € Z.
(2) All non-unitary feasible coalitions can be written in a unique way as a
union of non-unitary supports.

We will denote by USIV the subclass of US" where the above two con-
ditions are true. The following result is a generalization of the characterization
for the position value given by Borm, Owen and Tijs [1], since in a commu-
nication situation the non-unitary supports are the edges of the graph and the
feasible coalitions are the connected ones and the subclass of communication
situations for which the communication graphs do not contain cycles satisfy
the two above conditions.

Theorem 4. The position value is the unique allocation rule on USIV that sat-
isfies additivity, the superfluous support property and the influence property.

Proof. To prove uniqueness, let 7,y : USIY — R" be two allocation rules
that satisfy the three properties. We prove that z(N,v, #) = y(N,v, % ). The
game (N, v) is zero-normalized and v = } 7 v 750y 2rur, Where ur are the
unanimity games. Moreover, since 7 and y are additive allocation rules, it
suffices to show n(N, our, # ) =y(N,our, ) foral T N, |T| =2, ae R.
Two cases will be distinguished:

(a) There exists a coalition S € # such that T < S.
(b) There is no coalition S € # such that T' < S.

We first consider (b). As there is no coalition S € # such that T = S

(WT)%(&{) = Z ur(M) =0, forall o/ =,

MeC(N)

which implies that the conference game associated to our is the null game,
and consequently, ®@¢(%, (cuir)®) =0, for all Ce%. So n;(N,aur, F) =0,
for all i € N. On the other hand, if (ocuT)(/ = 0, it means that each support of
% is superfluous and hence y(N our, F) = y(N our, B\€). Moreover, the
triple (N, our, #\%) is support anonymous and then the influence property
implies that there is a € R such that yp(N,our, Z\¢) = pI(N,qur, B\%)
= 0. Therefore n(N, oaur, ) = y(N,our, ) = 0.

Now consider (a). By assumption, the set {F € & : T < F} is non-empty
and define T = (\{FeZ : T < F}. We have that T # & and by condition
(1) of USIV it follows that T € Z. It is also immediate that T is the minimal
feasible set that contains the set 7. Proposition 7 implies there are B; € % such
that T = Uie Bi. Thus, the conference game associated to aur is

(our)? 2% > R, (our)? () = {a it T e.%,
0 otherwise.



232 E. Algaba et al.

Moreover, T € .o/ < {Bi}ic; = o/, since each non-unitary feasible coali-
tion can be written in a unique way as a union of non-unitary supports. Hence

% o if {B} <
o o) = et S,
(aur)™ () {0 otherwise.

Notice that all supports B € 4 such that B ¢ {B;},.,, are superfluous in the
conference game, and so the superfluous support property implies that

n(N,our,7) =n(N,our,7'), and yp(N,our,7F)=7y(N,our,F'),

where 7' = (J{{j} : {j} € 7} U ({Bi};c)-

The conference game associated to cuz in # ' is support anonymous since,

iel

(B}, _Ja if o ={B;}
o il(of) =
(curr) () { 0 otherwise.

Hence, applying the influence property for the allocation rules = and

y, there is a B,6eR such that #n(N,aur,#')=0I(N,our,Z') and

y(N,our, F') = BI(N,our, F'). So, if i e N\T then L(N,our,Z') =0, and

therefore 7;(N,oaur, ') = y;(N,our, 7') = 0. Let i e T. Since T € C4/(N),
component-efficiency implies

z:yi(N7 our, F') = our(T an (N, our, 7'),

ieT ieT
and thus,

> BL(N,aur,F') = SL(N,aur, 7).

ieT ieT

Subtracting, >, 7(f —0)I;(N,oaur,#') =0, and as for T € C/(N) it is
satisfied that >°,_7 Li(N,our, ') # 0, it is deduced that f = . O

4 Convexity

We study now the conditions under which the convexity is inherited from the
underlying game to the conference game and we show that under the same
conditions the position value is in the core of the restricted game. Shapley
[11] showed that a game (N, v) is convex if and only if v(7 v Ta) — v(T1) —
U(Tz) > U(Sl U Sz) — U(Sl) — U(Sz), where T1 N1, = @, NE= 11, Sy, < T».
In the following result we will extend this condition. For this we will use that a
game (N, v) is convex if and only if v(T U R) —v(T) = v(S U R) — v(S), for
all S = T = N\R.

Lemma 3. If the game (N, v) is convex, then

k k k k
( > Zv >U<US>—ZU(Si), forall k=273, ...,
i—1 = i=1

where T;nT; = &, i #j, and S; = T;, for all i.
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Proof. Let S; < T; forall i and T; n T; = &. It is satisfied that
(TiuvThuTsu - UT)—v(Th) =2 v(S1vThuTsu - U TE)—0v(Sh),
since S} € T} € N\{T> v -+ U T} }. Similarly,
(ST uT30 - UT)—o(Ty) 2v(S1uSuTsu - UTE)—v(Sh),
since S = Th < N\{S1 u T3 U --- U T;}. Following in the same way:
o(STUS U US 1 U Ty) —v(Ty) = v(S1uS U U Sk USK) — v(Sk).

since Sy = Tx € N\{S1uS U --- US,_1}. Now, by adding all k inequal-
itieks we find o(TyUThaU - UTE) — oK o(T) = v(S1US U -~ USK) —
> ing 0(S3). O

Theorem 5. Let (N,v,7) e USIN. If (N,v) is convex, then the conference
game (%,v%) is convex.

Proof. We have to prove that given C € ¥ and & = 7 < %\{C} it holds that
V(T u{C}) —v¥(T) 2 v¥ (¥ U {C}) —v¥(¥). Taking into account the
definition of the conference game, this boils down to

Z o(T) — Z o(T) = Z v(S) — Z v(S).

TeCr(N) TeCz(N) SeCoomg V) SeCy(N)

Let Cx(N) ={T1,Tz,..., Tk} U{Tks1, Ticy2,. .., T)} such that T; n C #
@ for all i=1,....k and T'nC= for all i=k-+1,....h Let i=
l,...,k, we first show that |7,nC|=1. Suppose |T;nC|=>2, then
T;n Ce Z, since (N,v,#) e USI"Y and T; n C # C because otherwise C <
T; and then CeJ but this contradicts the fact that 7 = €\{C}. As
TinC<cT;eZ and T; n C € Z, then T; n C is either a support or a union of
non-unitary supports of 7. Hence, since C=Cu (T;nC) and T; n C # C,
we deduce that C could be expressed in two different ways as a union of sup-
ports contradicting that (N,v,#) e USIV. Clearly, T1nC # &,...,Tx N
C#¢, and TyuvCe%#,.... T, uCe%#, hence Tiu - ---uUT,uCeZF.
Moreover, as we showed above, every T1,..., Ty contains a unique element of
C. For this reason, the maximal feasible coalitions of N in 7 U {C} will be
{Thw -+ TV C, Tit1, Tiesa, - - ., T} Therefore, we obtain

k
(M) = > (T =v(Tyu - VT uC) = > (T
i=1

TeC (N) TeCx(N)

To(C}
An analogous reasoning leads to

Z v(S) — Z U(S):U(Slu--'uSpuC)—Zv(S,-),
=1

SGCT((“)(N) SeCz(N)
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with S;je C7(N), SinC# &, i=1,...,p and each S; contains a unique
element of C. Consequently, the following inequality remains to be proved:

k )4
o(Tyu---UTuC) — ZU >US1u~--uSpuC)—Zv(S,)
i=1 i=1

(1)

First, Tiu --- T uC=Ti U --- T, U ', where C' = C is defined
by C'={ieC:i¢ T\ --- UTi}. Moreover, S;u --- US,UC =S U ---
uS,u ", where C" < C is defined by C" = {ieC i¢gSiu---uUS,t

On the other hand, since . < 7 we have .¥ = .7 and if S; is a maximal
feasible coalition of_N in 7, then S; = T; for a umque maximal feasible co-
alition 7; of N in 7. So, p < k and without loss of generality S| < T7,...,
S, T

Since S; = 7; they must contain the same element of C, hence S;n

C =T;n C. Notice that C' = C” = C, therefore we have that C" = C' U
(C"\C') € C, and for each T;, where j=p+1,... k, there is an element

5(j) € (C"\C’) such that s(j) € T; and consequently s(j) # s(i) for all i,j e
{p+1,...,k}, i #j. By lemma 3, convexity of (N,v) implies
o(Tho T, 0Ty - T C') —v(T)) — - —v(Tx) — v(C")
o(S1U -+ US,U{s(p+ DU -+ U st} U C) — ofS))
= =08y —o({s(p+ DY) — -+ = v({s(k)}) = v(C").

By simplifying the above expression and taking into account that the game
(N, v) is zero-normalized, we find

k
o(Tho -~ T, T, U - uTkuC')—ZU(T,)
i—

P
o(S1u - uS,u(C"\CHu ) Zv

andasTh v --- T uC' =Ty U --- UT,uC, and moreover
Sju--uS,u(C"\CHYuC' =S v uUS,uC,
we may conclude that the inequality (1) is satisfied. O

We now describe the core of the Z-restricted game in terms of the feasible
coalitions.

Proposition 8. Let (N, v, F) a union stable cooperation structure, then

C(v”)={xeRY :x(N) = v"(N), x(S) = v(S) for all Se F}.
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Proof. Let x € C(v”), then x(N) = v” (N), and x(S) > v” (S), for all S = N.
Therefore, x(N) = v” (N), x(S) = v”7 (S) = v(S), for all S € .F and further-
more x({z}) > 7 ({i}) =0. On the other hand, let xeRY such that
x(N)=v”(N), and x(S) = v(S), for all Se % Then, for all S< N, if
C7(S) = & then v”(S) =0 and as xe RY, we have x(S) = v”(S)=0. If
C7(S) # &, set C#(S) ={S1,S3,...,Sk} with U 1Sy = S and hence,

k k

:inz Z Zx,- > ZU(SP):U‘?(S). O
ieS p=1 |ieS, p=1

Theorem 6. Let (N,v,7) e USIY such that (N,v) is a convex game. Then,

n(N,v, 7)€ C(v”).

Proof. By theorem 5, (%,v%) is convex and, therefore @(%,v%) e C(v%). We
first show that @(%,v%) > 0. By definition

(6,0 = > AT u{Ch - ()], Ceb.
{(9<%:C¢5)

So, we have to prove v4(¥ U {C})—v¥(¥)>0. By convexity of v
we have V(L u{C}) - ('(5”) > v%({C}), therefore it suffices to show
that v*({C}) = 0. Indeed, v*({C}) = Zrec yu(T) =v(C) = 0 since v is

superadditive and zero-normalized. As (pc(fg v ) > 0 then n(N,v, #) e RY,
We now prove that > . ym(N,v,#)=v"(N). Putting C,(N) =
{N1,..., Ny}, we have

Y omNo,F)= > m(N,o,F)+ > m(Nv,7F)

i . k Lk
ieN i¢ U/‘:IN/ ZEU/':IN/

Z (N, v, F) :Z

1k i—
ielJ N J=1

k
= ZU(NJ) = U(QF(N)a
=

since the position value is component-efficient and satisfies component-
dummy because it is an allocation rule.

Finally, we prove that >, _¢m;(N,v,#) = v(S), forall Se #, S # J. If S
is a unitary coalition {i}, m;(N,v,Z#) > v({i}) = 0. If S is not a unitary co-
alition, as S is feasible, it is a union of non-unitary supports. Moreover, this
expression is unique. Thus, let S = | wex Sk, Sk € €. Then

Snnn) - 3| 3 e

ieS ieS |LCe%,

Il
]
2
=
L
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As %; 2 {S; :ie S;} and @¢(%,v%) > 0, we obtain that

Sa.e )z S| Y o (6)

ieS ieS | {Sk:ieSk}
1 o @
ZZ S—|Sk| D5, (€,07)
keK | k|
>0 ({Sihe) = Y, o(M) =0(S),

MeC— N
¢ Coipieex ™

since S € {Sk};x and S = [ J e xSk The last inequality is due to the fact that
Dc(6,0%) e C(v%). U
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