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Abstract

The Shapley–Shubik power index in a voting situation depends on the number of orderings in
which each player is pivotal. TheBanzhaf power index depends on the number of ways in which
each voter can effect a swing. If the input size of the problem isn, then the function which

nmeasures the worst case running time for computing these indices is inOsn2 d. We present a
method based ongenerating functions to compute these power indices efficiently for weighted
multiple majority games and we study thetemporal complexity of the algorithms. Finally, we
apply the algorithms obtained with this method to compute the Banzhaf and the Shapley–Shubik
indices under the two decision rules adopted in the Nice European Union summit.
   2002 Elsevier Science B.V. All rights reserved.
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1 . Introduction

The analysis of power is central in political science. In general, it is difficult to define
the idea of power, but for the special case of voting situations several quantitative
measures for evaluating the power of a voter or coalition have been proposed. The two
classical power indices have received the most theoretical attention as well as
application to political structures. The first such power index was proposed by Shapley
and Shubik (1954). The second power index was introduced by Banzhaf (1965) and has
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been used in arguments in various legal proceedings. The computation of these power
indices is complex in practice, because the algorithms have exponential complexity.
However, using generating functions, Cantor (see Lucas, 1983), Mann and Shapley
(1962), Brams and Affuso (1976) and Tannenbaum (1997) have obtained significant
results for computing the Shapley–Shubik and the Banzhaf indices inweighted voting
games.

In this paper we focus on computing the Banzhaf index and the Shapley–Shubik
index by usinggenerating functions for weighted multiple majority games. The interest
in these games lies in that, nowadays, some international organizations which gather a
diversity of countries are considering a revision of the actual voting system of qualified
majority. So, the possible introduction of multiple majority systems to improve and
simplify the current decision systems is being discussed. Section 2 briefly recalls the
concept of weightedm-majority games. In Section 3 we compute the Banzhaf power
index by generating functions for weightedm-majority games and analyze its temporal
complexity. A similar study for the Shapley–Shubik index is described in Section 4. In
Section 5 we apply the algorithms obtained to compute both the Banzhaf and the
Shapley–Shubik indices under the two decision rules adopted in the Nice European
Union summit, which will be used in the European Union enlarged to 27 countries.

2 . Voting games

A simple game is a cooperative gameN,v whereN 5 1, . . . ,n is a finite set ands d h j
Nv:2 → 0,1 , such thatv 5 5 0 andv(S)# v(T ) wheneverS # T. A coalition iswinnings dh j

if v(S)5 1, andlosing if v(S)50. The collection of all winning coalitions is denoted by
0. We will write S < i and S\i instead ofS < hij and S\hij, respectively.

An important subclass of simple games is the class known asweighted voting games
which are used in many voting schemes. A weighted voting game is represented by
q; w , . . . ,w . Here, there aren players,w represents the voting weight of playerif g1 n i

with 0,w , q, for all i, and q is the quota needed to win. We shall assume thati
1
]q . o w . In such voting games the characteristic function is defined byv(S)5 1 ifi[N i2

w(S)$ q andv(S)50 otherwise, wherew(S)5o w . We suppose that all the weightsi[S i

and the quota are positive integers. Given the simple gamesv , . . . ,v we consider the1 m

simple game defined by:

(v ∧ . . . ∧ v )(S)5min v (S):1# t #mh j1 m t

A weighted m-majority game is the simple gamev ∧ . . . ∧ v where v 51 m t
t t tq ; w , . . . ,w , 1# t #m are weighted voting games. Then:f g1 n

t t1, if w (S)$ q , 1# t #m
v ∧ . . . ∧ v (S)5s d H1 m 0, otherwise

t twherew (S)5o w .i[S i
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3 . The normalized Banzhaf power index

The Banzhaf index is concerned with the number of times each player could change a
coalition from losing to winning and it requires to know the number of swings for every
player i (see Dubey and Shapley, 1979). Aswing for player i is a pair of coalitions
(S < i,S) such thatS < i is winning andS is not. For eachi [N, we denote byh (v) thei

number of swings fori in gamev, that is, the number of winning coalitions in which
]player i is critical. The total number of swings ish(v)5o h (v) and thenormalizedi[N i

Banzhaf index is the vectorb(v)5 b (v), . . . ,b (v) where:s d1 n

h (v)i
]]b (v)5 ]i h(v)

The most useful method for counting the number of elementsf(k) of a finite set is to
obtain its generating function. Thegenerating function of f(k) is the formal power series:

kO f(k)x
k$0

We can work with generating functions of several variables:

k j lO O O f(k, j,l) x y z
k$0 j$0 l$0

For eachn [N, the number of subsets ofk elements of the setN 5 h1,2,. . . ,nj is given
by the explicit formula of the binomial coefficients:

n(n 2 1)? ? ? (n 2 k 11)n
]]]]]]]S D5k k!

A generating function approach to binomial coefficients may be obtained as follows. Let
S 5 hx ,x , . . . ,x j be ann-element set. Regard the elementsx ,x , . . . ,x as independent1 2 n 1 2 n

indeterminates. It is an immediate consequence of the process of multiplication that:

(11 x )(11 x ) ? ? ? (11 x )5O P x1 2 n i
x [TT7S i

Note that if T 5 5 then we obtain 1. If we put eachx 5 x, we obtain:i

nn uT u kS D(11 x) 5O P x 5O x 5O xkx[TT7S T7S k$0

Brams and Affuso (1976) obtained generating functions for computing the normalized
Banzhaf index. Letv 5 q; w , . . . ,w be a weighted voting game. They noted that thef g1 n

number of swings for playeri satisfies:

q21

i
h (v)5u S [⁄ 0 : S < i [0 u5 O bh ji k

k5q2wi

iwhereb is the number of coalitions that do not includei with weight k.k
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Proposition 1. (Brams–Affuso)Let v 5 q; w , . . . ,w be a weighted voting game.f g1 n
iThen the generating functions of numbers b are given by:h jk

n
wjB (x)5 P 11 xs di

j51, j±i

We now present generating functions for computing the Banzhaf power index in
weightedm-majority games.

Proposition 2. Let (N,v) be a weighted m-majority game such that v 5 v ∧ . . . ∧ v ,1 m
t t twith v 5 q ; w , . . . ,w , 1# t #m. For every i [N,f gt 1 n

1. The number of swings of player i is given by:

t tw (N \i ) w (N \i )

i i
h (v)5 O b 2 O bi k ???k k ???k1 m 1 mt t tk 5q 2w k 5qt i t

1#t#m 1#t#m

i twhere b is the number of coalitions S such that i [⁄ S, w (S)5 k for allk ???k t1 m

1# t #m.
i2. The generating functions of numbers b , are given by:h jk ???k k , . . . ,k $01 m 1 m

n
1 mw wj jB (x , . . . ,x )5 P 11 x ? ? ? xs di 1 m 1 m

j51, j±i

Proof. 1. First of all, we consider the set of all coalitionsS such thati [⁄ S with
t t tw (S)$ q 2w for all 1# t #m. Its cardinal is given by:i

1 mw (N \i ) w (N \i )

i is 5 O ? ? ? O b1 k ???k1 mm m1 1 k 5q 2wk 5q 2w m i1 i

t t iAs w (S < i)$ q , 1# t #m, thens coincides with the number of winning coalitions in1

which the playeri participates.
On the other hand, inside of the set of the winning coalitions that contain playeri, we

consider the subset of those coalitions in which playeri is not necessary to win. The
cardinal of this subset coincides with the set of all coalitionsS such thati [⁄ S with

tw (S)$ q, 1# t #m, and it is given by:

1 mw (N \i ) w (N \i )

i is 5 O ? ? ? O b2 k ???k1 mm1 k 5qk 5q m1

i iTherefore, the number of swings of playeri is h (v)5 s 2 s .i 1 2

2. Expanding the function:
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n
1 m 1 mw w w wj j i iB x , . . . ,x 5 P 11 x ? ? ? x 5O P x ? ? ? xs ds d1 m 1 m 1 m

j51 i[SS#N

1 mw (S ) w (S )
5 O x ? ? ? x1 m

S#N

1 mw (N ) w (N )

k k1 m5 O ? ? ? O b x ? ? ? xk ???k 1 m1 m
k 50 k 501 m

tw (N )

k k1 m5 O b x ? ? ? xk ???k 1 m1 m
k 50t

1#t#m

ThenB(x , . . . ,x ) is a generating function for the numbersb where eachb is1 m k k k k1??? m 1??? mtthe number of coalitionsS such thatw (S)5 k , 1# t #m. To obtain the numberst 1 mi w wi ib , it suffices to delete the factors11 x ? ? ? x d in the polynomialh jk k k , . . . ,k $0 1 m1??? m 1 m

B(x , . . . ,x ) giving rise to the generating functionB (x , . . . ,x ). h1 m i 1 m

Example. We consider the weighted double majority gamev 5 v ∧ v , where v 51 2 1
18; 5,3,2,2 andv 5 3; 1,1,1,1 . Its characteristic function isv ∧ v (S)5 1 if w (S)$f g f g2 1 2

28 andw (S)$ 3, andv ∧ v (S)50 otherwise. We first calculate the functionsB (x,y)51 2 in
1 2w wj jP 11 x y :s d

j51, j±i

2 3 4 2 5 2 7 3B (x,y)511 2x y 1 x y 1 x y 12x y 1 x y1

2 5 4 2 7 2 9 3B (x,y)511 2x y 1 x y 1 x y 12x y 1 x y2

2 3 5 5 2 7 2 8 2 10 3B (x,y)511 x y 1 x y 1 x y 1 x y 1 x y 1 x y 1 x y3

2 3 5 5 2 7 2 8 2 10 3B (x,y)511 x y 1 x y 1 x y 1 x y 1 x y 1 x y 1 x y4

To compute the number of swings for each player the following differences are
calculated:

7 3 7 3
1 1

h (v)5O O b 2O O b 542 05 41 kr kr
k53 r52 k58 r53

9 3 9 3
2 2

h (v)5O O b 2O O b 532 15 22 kr kr
k55 r52 k58 r53

10 3 10 3
3 3

h (v)5O O b 2O O b 532 15 23 kr kr
k56 r52 k58 r53

10 3 10 3
4 4

h (v)5O O b 2O O b 532 15 24 kr kr
k56 r52 k58 r53

As the total number of swings is 10, we obtainb(v)5 2/5,1/5,1/5,1/5 .s d
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iWith the aim of making easier the computation of the coefficientsb , we can use ak ???k1 m

table m-dimensional, to store the coefficients ofB (x , . . . ,x ). If we arrange thei 1 m
icoefficients by increasing powers ofx with t [ h1, . . . ,mj, the elementb is placedt k ???k1 m

in the position k 1 1, . . . ,k 1 1 . For instance, the matrix that contains the coefficientss d1 m

of B (x,y) is3

Proposition 3. Let (N,v) be a weighted m-majority game such that v 5 v ∧ . . . ∧ v ,1 m
t t twhere v 5 q ; w , . . . ,w , 1# t #m. Thenf gt 1 n

1. The number c of terms of:
n

1 mw wj jB(x , . . . ,x )5P 11 x ? ? ? xs d1 m 1 m
j51

m
n tsatisfies that n 1 1# c #min 2 ,P w (N)11 .S D

t51
2. The number of terms of B (x , . . . ,x ), for every i [N, is bounded by c.i 1 m

Proof.

1. A lower bound ofc is obtained in the case in which the weights of all players are
1t t wequal, that isw 5w , 1# t #m, 1# i # n. The number of terms of (11 x ? ? ?i 1

mw nx ) is always less or equal than the number of terms ofB(x , . . . ,x ). On the otherm 1 m

hand, we have that:
1 mw (N ) w (N )

k k1 mB(x , . . . ,x )5 O ? ? ? O b x ? ? ? x1 m k ???k 1 m1 m
k 50 k 501 m

tis a polynomial of degreew (N) in x , 1# t #m, and in which there are no termst m
k t ntsuch asx , 1# t #m. Therefore, c #P w (N)1 1. Moreover, at worst,c # 2t

t51because all exponents of the terms ofB(x , . . . ,x ) are different and then the number1 m

c coincides with the number of subsets ofN.
2. It is straightforward by part 1.h
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The time complexity function f :N→N of an algorithm give us the maximum timef ns d
needed to solve any problem instance of encoding length at mostn [N. A function f ns d
is O g n if there is a constantk such that f n # k g n for all integersn [N. Weu us s dd u s du s d
analyze our algorithms in thearithmetic model, that is, we count elementary arithmetic
operations and assignments. For instance, the algorithm for computing the product of

3two n 3 n matrices isOsn d. We obtainpseudo polynomial algorithms, i.e. polynomial in
n and c, for computing the Banzhaf and the Shapley–Shubik indices.

Proposition 4. Let (N,v) be a weighted m-majority game such that v 5 v ∧ . . . ∧ v ,1 m
t t twhere v 5 q ; w , . . . ,w , 1# t #m. Thenf gt 1 n

1. To expand the polynomial B(x , . . . ,x ), a time O(nC) is required where C 51 mm
n tmin 2 ,P w (N)11 .S D

t51
2. For each i [N, to expand the polynomial B (x , . . . ,x ), a time O(nc) is required.i 1 m

Proof.

1. If f(n) is the number of necessary operations to expand the polynomial
n

1 m(n) w wj jB (x , . . . ,x )5P 11 x ? ? ? x , we can establish the following recurrences d1 m 1 m
j51

relation:

O(1), if n 51
O( f(n))5HO( f(n 2 1)1 3C), if n $2

since f(1)5 1 and forn $2, at worst, the computation of:

1 m(n) (n21) w wn nB (x , . . . ,x )5B (x , . . . ,x )s11 x ? ? ? x d1 m 1 m 1 m

requires a number of products and sums with upper bounds of 2C and C,
respectively, becauseC is a upper bound of the number of nonzero coefficients of
B(x , . . . ,x ). If we leave out the notationO ? and expand the above recurrence, wes d1 m

have:

f(n)5 f(n 21)1 3C 5 f(n 22)1 2(3C)5 ? ? ? 5 f(n 2 k)1 k(3C).

For k 5 n 21, it holds f(n)5 f(1)1 (n 21)(3C). That is,O( f(n))5O(nC).
2. It is straightforward by 1. h

Next, we describe the functionm-banzhafPower which will be used to compute the
normalized Banzhaf index of all players in a weightedm-majority game and we study its
time complexity.

Function m-banzhafPower (weights 1, . . . ,weights m,q , . . . ,q )1 m] ]

hweights t: list of n integers;q : integer; 1# t #mjt]
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for i from 1 to n for t from 1 to m
t t tlist aux t←delete(hw , . . . ,w j,w )1 n i] ] 3end for

n
1 mw w j j(1) B (x , . . . ,x )← P 11 x ? ? ? xs di 1 m 1 m

tw [list aux tj ] ] 1#t#m

(2) coef f ←Coef ficients of B (x , . . . ,x )i 1 m
t t t(3) Fork from q 2w 1 1 tow (N\i)1 1, 1# t #mt i

i s ←Sum coef f k , . . . ,kf gf g1 1 m
t t(4) Fork from q 11 tow (N\i)1 1,1# t #m t

is ←Sum[coef f [k , . . . ,k ]]2 1 m
i i(5)h ←s 2 si 1 2 end for

n

]h←O hi
i51

for i from 1 to n
]b ←h /hi iF

end for

output hb , . . . ,b j1 n

Proposition 5. Let (N,v) be a weighted m-majority game such that v 5 v ∧ ? ? ? ∧ v ,1 m
t t twhere v 5 q ; w , . . . ,w , 1# t #m. To compute the normalized Banzhaf index of allf gt 1 n

2players, with the function m-BanzhafPower a time O max(m,n c) is required where c iss d
the number of terms of B(x , . . . ,x ).1 m

Proof. In this situation, the complexity order of the functionf(n) which determines the
execution time of the functionm-BanzhafPower, is given by:

O( f(n)) 5 O(t(loop1)1 t(assignment)1 t(loop2))
5 O(max(t(loop1),n,2n))5O(t(loop1))

As O(t(loop1))5O(n(t(loop int)1 t(assignment1)1 ? ? ? 1 t(assignment5))) and taking
]

into account that:

O(t(loop int))5O(m t(list aux t))5O(m)
] ] ]

O(t(assignment1))5O(t( polynomial)5O(nc)

O(t(assignment2))5O(t(coeff ))5O(c)

O(t(assignment3))5O(t(sum1))5O(c)
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O(t(assignment4))5O(t(sum2))5O(c)

O(t(assignment5))5O(t(difference))5O(1)

2it holds O( f(n))5O(t(loop1))5O(nt(assignment1))5O(n c). h

4 . The Shapley–Shubik power index

NThe Shapley–Shubik index for a simple gamev:2 → 0,1 is the vectorF(v)5h j
F (v), . . . ,F (v) defined by:s d1 n

n21s! n 2 s 2 1 ! j!(n 2 j 2 1)!s d i]]]] ]]]]F (v)5 O 5O di jn! n!j50hS[⁄ 0 :S<i[0j

iwhere eachd is the number of swings of playeri in coalitions of sizej.j

David G. Cantor used generating functions for computing exactly the Shapley–Shubik
index for large voting games. As related by Mann and Shapley (1962), Cantor’s
contribution was the following result. Ifv 5 q; w , . . . ,w is a weighted voting game,f g1 n

ithen the numberd satisfies:j

q21

i id 5 O aj kj
k5q2wi

iwherea is the number of ways in whichj players, other thani, can have a sum ofkj

weights equal tok.

Proposition 6. (Cantor) Let v 5 q; w , . . . ,w be a weighted voting game. Then thef g1 n
igenerating functions of numbers a are given by:h jkj

n
wjS (x,z)5 P 11 z xs di

j51, j±i

Similar to what happens with the Banzhaf index in weightedm-majority games, it is also
possible to obtain, using generating functions, an analogous result for the calculation of
the Shapley–Shubik power index. When the gameN,v is given byv 5 v ∧ . . . ∧ v ,s d 1 m

t t twherev 5 q ; w , . . . ,w , 1# t #m, then we have that:f gt 1 n

t tw (N \i ) w (N \i )

i i id (v)5 O a 2 O aj k ???k j k ???k j1 m 1 mt t tk 5q 2w k 5qt i t

1#t#m 1#t#m

iwhere a is the number of coalitionsS, with cardinal j, such thati [⁄ S, and,k ???k j1 mtw (S)5 k for all 1# t #m.t

Proposition 7. Let (N,v) be a weighted m-majority game such that v 5 v ∧ ? ? ? ∧ v ,1 m



72 E. Algaba et al. / Mathematical Social Sciences 46 (2003) 63–80

t t twhere v 5 q ; w , . . . ,w , 1# t #m. For every i [N, the generating functions off gt 1 n
inumbers a , are given byh jk ???k j k , . . . ,k , j$01 m 1 m

n
1 mw wj jS (x , . . . ,x ,z)5P 11 z x ? ? ? x .s di 1 m j51, j±i 1 m

Proof. Expanding the function

n
1 m 1 mw w uSu w wj j i iS(x , . . . ,x ,z) 5P 11 z x ? ? ? x 5O z P x ? ? ? xs d1 m 1 m 1 m

j51 i[SS#N

1 mw (S ) w (S ) uSu
5 O x ? ? ? x z1 m

S#N

1 mw (N ) w (N ) n
k k j1 m5 O ? ? ? O Oa x ? ? ? x zk ???k j 1 m1 m

k 50 k 50 j501 m

tw (N ) n
k k j1 m5 O O a x ? ? ? x zk ???k j 1 m1 m

j50(k 50)t

1#t#m

twhere a is the number of coalitionsS #N, such that S 5 j, w (S)5 k for allu uk ???k j t1 m 1i w i1# t #m. To obtain the numbersa , it suffices to delete the factors11 z x ? ? ?k ???k j 11 mmwix d in the polynomial S(x , . . . ,x ,z), giving rise to their generating functionm 1 m

S (x , . . . ,x ,z). hi 1 m

iNote that if we know the coefficientsa , using the polynomialh jk ???k j k , . . . ,k , j$01 m 1 miS (x , . . . ,x ,z), then the numbershd j can be determined. These numbers can bei 1 m j j$0
n21 i jidentified with the coefficients of a polynomialg (z)5o d z and taking into accounti j50 j

that:

t tw (N \i ) w (N \i )

i i id (v)5 O a 2 O aj k ???k j k ???k j1 m 1 mt t tk 5q 2w k 5qt i t

1#t#m 1#t#m

it holds:

t tw (N \i ) w (N \i )n21 n21
i j i i jg (z)5O d z 5O O a 2 O a zi j k ???k j k ???k j1 m 1 mt t tj50 j50 k 5q 2w k 5q3 4t i t

1#t#m 1#t#m

Hence, we obtain that:

t tw (N \i ) w (N \i )n21 n21
i j i jg (z)5 O O a z 2 O O a zF G F Gi k ???k j k ???k j1 m 1 mt t tj50 j50k 5q 2w k 5qt i t

1#t#m 1#t#m

and by Proposition 7 we have that:
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tw (N \i ) n21
i j k k1 mS (x , . . . ,x ,z)5 O O a z x ? ? ? x .F Gi 1 m k ???k j 1 m1 mt t j50k 5q 2wt i

1#t#m

The elements ofS (x , . . . ,x ,z) can be stored in a tablem-dimensional, where thei 1 m
n21 i jelement (k 1 1, . . . ,k 11) is o a z . For example, forn 5 2, we have1 m j50 k ???k j1 m

We determine a polynomial inz whose coefficients represent the winning coalitions that
contain playeri:

tw (N \i ) n21
i i js (z)5 O O a z1 k ???k j1 mt t j50k 5q 2wt i

1#t#m

On the other hand, we consider a polynomial inz whose coefficients represent the
number of winning coalitions that contain playeri but his presence is not necessary to
win:

tw (N \i ), n21
i i js (z)5 O O a z2 k ???k j1 mt j50k 5qt

1#t#m

i iThese polynomialss (z) and s (z) are obtained by adding, respectively, the nonzero1 2
t telements in the table, from the (q 2w ) to the last, for all 1# t #m. Finally,i

n21
i j i ig (z)5O d z 5 s (z)2 s (z)i j 1 2

j50

Proposition 8. Let (N,v) be a weighted m-majority game such that v 5 v ∧ ? ? ? ∧ v ,1 m
t t twhere v 5 q ; w , . . . ,w , 1# t #m. Then,f gt 1 n

1. The number c of terms of
n

1 mw wj jS(x , . . . ,x ,z)5P 11 z x ? ? ? xs d1 m 1 m
j51

verifies that
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m
n tn 1 1# c #min 2 ,nP w (N)11 .S D

t51

2. The number of terms of S (x , . . . ,x ,z), for every i [N, is bounded by c.i 1 m

Proof.

1. A lower bound is obtained in the case in which the weights of all players are equal,
1 mt t w w nthat is,w 5w , 1# t #m, 1# i # n. The number of terms of (11 z x ? ? ? x ) isi 1 m

always less or equal than the number of terms of:

n
1 mw wj jS(x , . . . ,x ,z)5P 11 z x ? ? ? xs d1 m 1 m

j51

Therefore,c $ n 11. To determine an upper bound we note that:

tw (N ) n
k k j1 mS(x , . . . ,x ,z)5 O O a x ? ? ? x z1 m k ???k j 1 m1 m

k 50 j50t

1#t#m

tis a polynomial of degreew (N) in x , 1# t #m, degreen in z, and in which there aret
j kno terms such asz or x , 1# t #m. Therefore:t

m
tc # nP w (N)1 1.

t51

nMoreover, at worst,c #2 because all exponents of the terms of the polynomial
S(x , . . . ,x ,z) are different and, thenc coincides with the number of subsets ofN.1 m

2. It is straightforward by part 1. h

Proposition 9. Let (N,v) be a weighted m-majority game such that v 5 v ∧ . . . ∧ v ,1 m
t t twhere v 5 q ; w , . . . ,w , 1# t #m. Then,f gt 1 n

1. To expand the polynomial S(x , . . . ,x ,z), a time O nC is required wheres d1 m

m
n tC 5min 2 ,nP w (N)11 .S D

t51

2. For each i [N, to expand the polynomial S (x , . . . ,x ,z), a time O(nc) is required.i 1 m

We can compute the normalized Shapley–Shubik index of all players in a weighted
m-majority game, using generating functions, with the function calledm-ShapleyPower.

Function m-ShapleyPower(weights 1, . . . ,weights m,q , . . . ,q )1 m] ]

hweights t: list of n integers;q : integer; 1# t #mjt]
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for i from 1 to n
for t from 1 to m

t t tlist aux t←delete(hw , . . . ,w j,w )1 n i] ]3end for
n

1 mw wj j(1) S (x , . . . ,x z)← P 11 zx ? ? ? xs di 1 m 1 m tw [list aux tj ] ]

1#t#m (2) coef f ←Coef ficients of S (x , . . . ,x ,z)i 1 m
t t t(3) Fork from q 2w 1 1 tow (N\i)1 1, 1# t #mt i is (z)←Sum coef f k , . . . ,kf gf g1 1 m
t t(4) Fork from q 11 tow (N\i)1 1,1# t #m t

is ←Sum[coef f [k , . . . ,k ]]2 1 m i i(5) g (z)←s (z)2 s (z)i 1 2
n211 i](6)f ← O d j!(n 2 j 2 1)!i jn! j50 end for

output hf , . . . ,f j1 n

We can prove to compute the normalized Shapley–Shubik index of all players in a
2weighted m-majority game, with the functionm-ShapleyPower, a timeO(n c) is

required, wherec is the number of nonzero coefficients ofS(x , . . . ,x ,z).1 m

5 . Power indices in the European Union

The Journal of Theoretical Politics volume 11, number 3 (July 1999) and volume 13,
number 1 (January 2001) has published several articles about the modelling of decision
making process in the European Union (EU). Garrett and Tsebelis (1999a,b) criticized
the classical voting power method in the context of the EU because the power indices do
not take into account the preferences of players and the institutional structure of the EU.
Lane and Berg (1999) assert that:

Cooperative theory solution concepts, on the other hand, assume that players have
specified preferences and can make the types of binding commitments typically
required to cement together a particular coalition in support of a particular outcome.
Cooperative solutions, including power indices, therefore, are directly applicable to
policy analysis only in conjunction with assumptions about preferences (spatial or
otherwise) and in circumstances that suggest that binding agreements may be
feasible. Therefore, criticism of cooperative game theory and power indices may be
misplaced insofar as constitutional analysis is concerned, but may have more weight
insofar as policy analysis is concerned, although formal power indices often help
explain voting outcomes.
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´Holler and Widgren (1999) propose some ideas to combine spatial voting games and
power index models. Steunenberg et al. (1999) define the strategic power index, a new
approach which is based on spatial and sequential models of decision making. We agree
with Lane and Berg on the need for a priori measures of power. However, we believe
that the best choice is a method that takes the voting power theory, so-called
intergovernmentalism and supplements it by theinstitutional analysis of the EU
legislative process.

The Council of Ministers of the EU represents the national governments of the
member states. The Council uses a voting system of qualified majority to pass new
legislation. The Nice European Council in December 2000 established two decision rules
for the EU enlarged to 27 countries. These rules are contained in theDeclaration on the
enlargement of the European Union and the Declaration on the qualified majority
threshold and the number of votes for a blocking minority in an enlarged Union
(Official Journal of the European Communities 10.3.2001, C 80/80-85).

Felsenthal and Machover (2001) analyzed in terms of a priori measures of power
¨these decision rules for the Council of Ministers of the EU. They used the Brauninger-

¨Konig IOP 1.0 program and the Lemma 3.3.12 in Felsenthal and Machover (1998) to
calculate the voting power of each one of the present 15 members and the future 27
ones. The new version of the program IOP 2.0 allows us to calculate voting power
indices for the post Nice institutions of the EU where Council members have two kinds
of weighted and one unweighted vote. In addition, an option for reporting winning and

¨ ¨minimal winning coalitions is implemented (see Brauninger and Konig, 2001).
We next present our results concerning to the Banzhaf and Shapley–Shubik power

indices using the algorithms of the previous sections. We compute these indices under
the two decision rules prescribed by the Treaty of Nice. Each member state represented
in the future Council is considered an individual player. The players in the Council of
the EU enlarged to 27 countries are:

hGermany, United Kingdom, France, Italy, Spain, Poland, Romania, The Netherlands,
Greece, Czech Republic, Belgium, Hungary, Portugal, Sweden, Bulgaria, Austria,
Slovak Republic, Denmark, Finland, Ireland, Lithuania, Latvia, Slovenia, Estonia,
Cyprus, Luxembourg, Maltaj.

The first decision rule is the weighted triple majority gamev ∧ v ∧ v , where the three1 2 3

weighted voting games corresponding to votes, countries and population, are the
following:

v 5 [255; 29,29,29,29,27,27,14,13,12,12,12,12,12,10,10,10,7,7,7,7,7,4,4,4,4,4,3]1

v 5 [14; 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]2

v3

5 [620; 170,123,122,120,82,80,47,33,22,21,21,21,21,18,17,17,11,11,11,8,8,5,4,3,2,1,1]

The gamev is defined assigning to every country, a number of votes equal to the rate3
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per thousand of its population over the total population and the quota represents the 62%
of the total population. So, a voting will be favorable if it counts on the support of 14
countries with at least 255 votes, and with at least the 62% of the population.

9The second decision rule is the weighted triple majority gamev ∧ v ∧ v , where the1 2 3

9weighted voting gamev consists of a qualified majority of 2/3 of the countries, that is,2

9v 5 [18; 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]2

Next, we give a table which contains the Banzhaf power indices of the countries if the
first decision rule is used. In the column calledPop. I is included the percentage of
population over the total, and in the columnVote I, the percentage of votes of every
country over the total. The Banzhaf indices of the gamev are included in the column1

Game1, and the Banzhaf indices of the weighted triple majority gamev ∧ v ∧ v in the1 2 3

column Game3a.
From Table 1, we can deduce the following conclusions:

• The first decision rule, that consists of a triple majority system, is quasi equivalent to

Table 1
The Banzhaf index under the first rule

Countries Population Votes Pop. I Vote I Game1 Game3a

Germany 82.038 29 0.170 0.084 0.0778 0.0778
United Kingdom 59.247 29 0.123 0.084 0.0778 0.0778
France 58.966 29 0.123 0.084 0.0778 0.0778
Italy 57.612 29 0.120 0.084 0.0778 0.0778
Spain 39.394 27 0.082 0.078 0.0742 0.0742
Poland 38.667 27 0.080 0.078 0.0742 0.0742
Romania 22.489 14 0.047 0.041 0.0426 0.0426
The Netherlands 15.760 13 0.033 0.038 0.0397 0.0397
Greece 10.533 12 0.022 0.035 0.0368 0.0368
Czech Republic 10.290 12 0.021 0.035 0.0368 0.0368
Belgium 10.213 12 0.021 0.035 0.0368 0.0368
Hungary 10.092 12 0.021 0.035 0.0368 0.0368
Portugal 9.980 12 0.021 0.035 0.0368 0.0368
Sweden 8.854 10 0.018 0.029 0.0309 0.0309
Bulgaria 8.230 10 0.017 0.029 0.0309 0.0309
Austria 8.082 10 0.017 0.029 0.0309 0.0309
Slovak Republic 5.393 7 0.011 0.020 0.0218 0.0218
Denmark 5.313 7 0.011 0.020 0.0218 0.0218
Finland 5.160 7 0.011 0.020 0.0218 0.0218
Ireland 3.744 7 0.008 0.020 0.0218 0.0218
Lithuania 3.701 7 0.008 0.020 0.0218 0.0218
Latvia 2.439 4 0.005 0.012 0.0125 0.0125
Slovenia 1.978 4 0.004 0.012 0.0125 0.0125
Estonia 1.446 4 0.003 0.012 0.0125 0.0125
Cyprus 0.752 4 0.002 0.012 0.0125 0.0125
Luxembourg 0.429 4 0.001 0.012 0.0125 0.0125
Malta 0.379 3 0.001 0.009 0.0094 0.0094
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the first game of qualified majority. The Banzhaf power of all countries is almost the
same as the power with the simple gamev , with the double gamev ∧ v , and with1 1 2

the triple onev ∧ v ∧ v .1 2 3

• The second decision rule, that differs from the first one because it requires the
approval at least of 2/3 of the countries, is quasi equivalent to the weighted double

9majority gamev ∧ v . In this rule, the required population quota to adopt a decision1 2

does not change the Banzhaf power of the countries.

Table 2 contains the Shapley–Shubik indices for the first decision rule adopted, i.e. for
the gamev ∧ v ∧ v , labeledGame3a. In a similar way, in both cases, the results1 2 3

corresponding to the gamesv , labeledGame1, andv ∧ v , labeledGame2a are similar.1 1 2

The conclusion, such as we anticipated before, is that the results corresponding to the
gamesv ∧ v ∧ v and v ∧ v are almost the same.1 2 3 1 2

Next, we include the computations corresponding to the Banzhaf and Shapley–Shubik
9indices for the second decision rule adopted (Table 3), i.e. for the gamev ∧ v ∧ v ,1 2 3

labeledGame3b.
Summarizing, there are two main conclusions:

Table 2
The Shapley–Shubik index under the first rule

Countries Population Game1 Game2a Game3a

Germany 0.170 0.0867 0.0867 0.0871
United Kingdom 0.123 0.0867 0.0867 0.0870
France 0.123 0.0867 0.0867 0.0870
Italy 0.120 0.0867 0.0867 0.0870
Spain 0.082 0.0800 0.0800 0.0799
Poland 0.080 0.0800 0.0800 0.0799
Romania 0.047 0.0399 0.0399 0.0399
The Netherlands 0.033 0.0368 0.0368 0.0368
Greece 0.022 0.0341 0.0341 0.0340
Czech Republic 0.021 0.0341 0.0341 0.0340
Belgium 0.021 0.0341 0.0341 0.0340
Hungary 0.021 0.0341 0.0341 0.0340
Portugal 0.021 0.0341 0.0341 0.0340
Sweden 0.018 0.0282 0.0282 0.0281
Bulgaria 0.017 0.0282 0.0282 0.0281
Austria 0.017 0.0282 0.0282 0.0281
Slovak Republic 0.011 0.0196 0.0196 0.0196
Denmark 0.011 0.0196 0.0196 0.0196
Finland 0.011 0.0196 0.0196 0.0196
Ireland 0.008 0.0196 0.0196 0.0196
Lithuania 0.008 0.0196 0.0196 0.0196
Latvia 0.005 0.0110 0.0110 0.0110
Slovenia 0.004 0.0110 0.0110 0.0110
Estonia 0.003 0.0110 0.0110 0.0110
Cyprus 0.002 0.0110 0.0110 0.0110
Luxembourg 0.001 0.0110 0.0110 0.0110
Malta 0.001 0.0082 0.0082 0.0082
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Table 3
The power indices under the second rule

Countries Banzhaf index Shapley–Shubik index

Game1 Game2b Game3b Game1 Game2b Game3b

Germany 0.0778 0.0665 0.0665 0.0867 0.0834 0.0837
United Kingdom 0.0778 0.0665 0.0665 0.0867 0.0834 0.0836
France 0.0778 0.0665 0.0665 0.0867 0.0834 0.0836
Italy 0.0778 0.0665 0.0665 0.0867 0.0834 0.0836
Spain 0.0742 0.0631 0.0631 0.0800 0.0768 0.0767
Poland 0.0742 0.0631 0.0631 0.0800 0.0768 0.0767
Romania 0.0426 0.0407 0.0407 0.0399 0.0395 0.0394
The Netherlands 0.0397 0.0386 0.0386 0.0368 0.0366 0.0365
Greece 0.0368 0.0366 0.0366 0.0341 0.0341 0.0340
Czech Republic 0.0368 0.0366 0.0366 0.0341 0.0341 0.0340
Belgium 0.0368 0.0366 0.0366 0.0341 0.0341 0.0340
Hungary 0.0368 0.0366 0.0366 0.0341 0.0341 0.0340
Portugal 0.0368 0.0366 0.0366 0.0341 0.0341 0.0340
Sweden 0.0309 0.0325 0.0325 0.0282 0.0287 0.0286
Bulgaria 0.0309 0.0325 0.0325 0.0282 0.0287 0.0286
Austria 0.0309 0.0325 0.0325 0.0282 0.0287 0.0286
Slovak Republic 0.0218 0.0263 0.0263 0.0196 0.0209 0.0208
Denmark 0.0218 0.0263 0.0263 0.0196 0.0209 0.0208
Finland 0.0218 0.0263 0.0263 0.0196 0.0209 0.0208
Ireland 0.0218 0.0263 0.0263 0.0196 0.0209 0.0208
Lithuania 0.0218 0.0263 0.0263 0.0196 0.0209 0.0208
Latvia 0.0125 0.0198 0.0198 0.0110 0.0131 0.0131
Slovenia 0.0125 0.0198 0.0198 0.0110 0.0131 0.0131
Estonia 0.0125 0.0198 0.0198 0.0110 0.0131 0.0131
Cyprus 0.0125 0.0198 0.0198 0.0110 0.0131 0.0131
Luxembourg 0.0125 0.0198 0.0198 0.0110 0.0131 0.0131
Malta 0.00942 0.0177 0.0177 0.0082 0.0106 0.0106

1. Germany has almost the same power indices that United Kingdom, France and Italy,
for the weighted triple majority gamev ∧ v ∧ v : the difference is only 4 swings1 2 3

with respect to 28 millions. Concerning to the weighted triple majority game
9v ∧ v ∧ v , the difference is also 4 swings in favor of Germany, over 24 millions1 2 3

and a half of swings. Consequently, the distinction between the Banzhaf indices of
Germany and United Kingdom, France and Italy are, respectively, smaller than

27 271.43 10 and 1.6310 .
2. The two rules of triple majority, adopted in the Nice summit meeting, are almost

equivalent to a game of simple majority (the first) or double (the second). With both
rules, the required population quota to adopt a decision does not change in practice
the power of the countries.

The power indices obtained for the member states in the Council of Ministers under the
Nice weighting of votes, are contained in twonotebooks of the computer system
Mathematica 4, due to Bilbao et al. (2001a,b).
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