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Abstract. The aim of this paper is to study a new class of cooperative games called interior operator games.
These games are additive games restricted by antimatroids. We consider several types of cooperative games
as peer group games, big boss games, clan games and information market games and show that all of them are
interior operator games. Next, we analyze the properties of these games and compute the Shapley, Banzhaf
and Tijs values.
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1. Introduction

A cooperative game describes a situation in which a finite set of n players can generate
certain payoffs by cooperation. A value for cooperative games is a function which as-
signs to every cooperative game a n-dimensional real vector which represents a payoff
distribution over the players. Two well-known values are the Shapley value as proposed
by Shapley (1953), and the Banzhaf value, initially introduced in the context of vot-
ing games by Banzhaf (1965), and later on extended to arbitrary games by Dubey and
Shapley (1979). Compromise values are a special type of values which assign to each
game a payment based on two vectors. These vectors, so-called upper and lower, are the
maximum and the minimum payment that the players can expect to get. The Tijs value
(Tijs, 1981) was the first compromise value introduced for cooperative games.

In a cooperative game the players are assumed to be identical in the sense that
every player can cooperate with every other player. However, in practice there exist
asymmetries among the players. For this reason, the game theoretic analysis of decision
processes in which one imposes asymmetric constraints on the behavior of the players
has been and continues to be an important subject to study. Some models which analyze
social asymmetries among players in a cooperative game are the coalition structures by
Aumann and Maschler (1964), and the communication situations studied by Myerson
(1977), Owen (1986), and Borm, Owen, and Tijs (1992).

Another type of asymmetry among the players in a cooperative game is introduced
in Gilles, Owen, and van den Brink (1992), and van den Brink (1997). In these models,



142 BILBAO ET AL.

the possibilities of coalition formation are determined by the positions of the players in
a hierarchical permission structure. Games on antimatroids were introduced in Jiménez-
Losada (1998) and Algaba et al. (2004) who showed that the feasible coalition systems
derived from both the conjunctive and disjunctive approach to games with a permission
structure were identified to certain families of antimatroids: poset antimatroids and an-
timatroids with the path property, respectively. On the other hand, Brânzei, Fragnelli,
and Tijs (2002) introduced peer group games that were described by a rooted tree. These
games are restricted games on poset antimatroids with the path property. This class of
antimatroids are the permission forest and permission tree structures which are often en-
countered in the economic literature. Another model in which cooperation possibilities
in a game are limited by some hierarchical structure on the set of players can be found
in Faigle and Kern (1993) who consider feasible rankings of the players.

The paper is organized as follows. In Section 2 we recall some preliminaries on
antimatroids. Section 3 is devoted to introduce cooperative games and the games called
interior operator games. Throughout Sections 4 and 5 we deals with formulas for the
Shapley, Banzhaf and Tijs values for interior operator games.

2. Antimatroids

Antimatroids were introduced by Dilworth (1940) as particular examples of semimodular
lattices. Several authors have obtained the same concept by abstracting combinatorial
properties. Edelman (1980) showed a crucial property of closures induced by convex
geometries, a dual concept of antimatroids. A systematic study of these structures was
started by Edelman and Jamison (1985), emphasizing the combinatorial abstraction of
convexity. Jiménez-Losada (1998) introduced cooperative games on feasible coalitions
given by antimatroids. In this section we introduce some basic concepts of antimatroid
theory. The reader can use (Korte, Lóvasz, and Schrader, 1991) for more details.

Definition 1. An antimatroid A on N is a family of subsets of 2N , satisfying

A0. ∅ ∈ A.
A1. (Accessibility) If S ∈ A, S �= ∅, there exists e ∈ S such that S \ {e} ∈ A.
A2. (Closed under union) If S, T ∈ A then S ∪ T ∈ A.

The definition of antimatroid implies the following augmentation property: if
S, T ∈ A with |T | > |S| then there exists e ∈ T \ S such that S ∪ {e} ∈ A. We
name feasibles the sets in A and we will consider only normal antimatroids, i.e., for
all e ∈ N there exists S ∈ A such that e ∈ S. In particular, this implies that N ∈ A.
Elements e ∈ N such that {e} ∈ A are called atoms and the set of atoms inA is a (A). For
those e ∈ N that satisfy N \ {e} ∈ A we will use coatoms (in fact, N \ {e} is the coatom),
and the coatoms form the set ca (A). An antimatroid (N ,A) is coatomic if ca (A) = N .
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Let (N ,A) be an antimatroid. This set family allows us to define the interior operator
int : 2N → A, given by

int(S) =
⋃

{T ∈A:T ⊆S}
T .

By A2, the interior of a set S is the unique maximal feasible set that the elements
of S can form among them (the basis of the set S). The following properties are verified
for the interior operator:

I1. int(S) ⊆ S, and int(S) = S if and only if S is feasible,

I2. If S ⊆ T then int(S) ⊆ int (T ) .

Let (N ,A) be an antimatroid. An element e of a subset S ∈ A is an endpoint of S
if S \ {e} ∈ A. A feasible set S is a path if it has only one endpoint, if e is this unique
endpoint we use e-path. Equivalently, an e-path is a minimal feasible set containing e.
It is known any set is feasible if and only if is the union of paths. The set of e-paths in
(N ,A) is denoted by A(e).

A poset antimatroid is an antimatroid which is closed under intersection. An ideal
of a poset P = (N , ≤) is a subset I ⊆ N such that e ∈ I, e′ ≤ e implies e′ ∈ I. A poset
antimatroid coincides with the set of the ideals of a poset. Moreover, Goecke, Korte, and
Lovász [1986, Theorem 2.1] obtain the following characterization:

PA. An antimatroid (N ,A) is a poset antimatroid if and only if |A(e)| = 1 for all e ∈ N .

Example 1. Let N be a finite set, and C ⊆ N , C �= ∅. The family

A = {S ⊆ N : S ⊆ C or C ⊆ S}
is a poset antimatroid. The only e-path for every e ∈ N is{{e} if e ∈ C,

C ∪ {e} if e /∈ C.

Example 2. Let N be a finite set, and I ⊂ N , |I | ≥ 2. The family

A = {S ⊆ N : S ∩ I �= ∅} ∪ {∅}
is a coatomic antimatroid. Since {e, e′} is an e-path for all e′ ∈ I if e /∈ I , it is not a poset
antimatroid.

A convex geometry is a set system (N ,L) where ∅ ∈ L ⊆ 2N and the following
holds: for any S ∈ L, S �= ∅ there exists an element e ∈ S with S \ {e} ∈ L, and
for all S, T ∈ L we have S ∩ T ∈ L. Since the feasible sets of an antimatroid (N ,A)
are closed under union, the family L = {N \ S : S ∈ A} is a convex geometry. Notice
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that the poset antimatroids are the antimatroids which are also convex geometries. On a
convex geometry can be defined the closure of a set S ⊆ N ,

S =
⋂

{T ∈L:T ⊇S}
T .

By the intersection, the closure of a set S is the only smallest feasible set in L containing
S. If (N ,A) is an antimatroid and (N ,L) is the associated convex geometry, there is
a duality relationship between their interior and closure operators. This property is that
N \ S = N \ int(S) for all S ∈ A.

3. Interior operator games

A cooperative game is a pair (N , v), where N ⊆ N is a finite set of players andv : 2N → R

is a characteristic function on N satisfying v(∅) = 0. The elements of N = {1, . . . , n}
are called players, the subsets S ⊆ N are coalitions and v(S) is the maximal profit for
the players in the coalition S. We denote the set of cooperative games with set of players
N by � (N ). Now, we consider restricted games. To be exact, we analyze additive games
restricted by the sets of an antimatroid A. Our study can be applicable to improve the
analysis of several types of classical games. We introduce some concepts of cooperative
game theory which will be used in this work. A cooperative game (N , v) is called

• monotonic if v(S) ≤ v(T ) for all S ⊆ T ⊆ N ,

• superadditive if v(S) + v(T ) ≤ v(S ∪ T ) for all S, T ⊆ N with S ∩ T = ∅,

• convex if v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ) for all S, T ⊆ N .

Other solution concept that we will use is the core introduced by Gillies (1953) as

C(N , v) = {x ∈ RN : x(N ) = v(N ), x(S) ≥ v(S) for all S ⊆ N }.

Balanced games are games which nonempty core, and it is said that the game
v ∈ � (N ) is totally balanced if the induced subgames vS ∈ �(S) are balanced for all
S ⊆ N , S �= ∅. Recall that the induced subgame vS is defined as vS(T ) = v(T ) for all
T ⊆ S.

Let (N ,A) be an antimatroid, w ∈ RN
+ a vector such that w ≥ 0, and (N , w) the

additive game defined by w(S) = ∑
e∈S we for all nonempty S ⊆ N , w (∅) = 0. In these

conditions, we introduce a new class of cooperative games.

Definition 2. The interior operator game (N , wA) is the cooperative game wA : 2N → R

defined by wA(S) = w(int(S)) for all S ⊆ N .
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Note that if S ∈ A then wA(S) = w(S). For any player e ∈ N an e-path means that
e depends on the players of the path. We introduce the sets

Pe =
⋃

S∈A(e)

S, Pe =
⋂

S∈A(e)

S.

The feasible coalition Pe is the set of the players for which e has some dependency. The
set Pe are the players that control player e. From now on, we use the notation {e} to
indicate the closure of the individual coalition {e} in the convex geometry (N ,L) dual
to the antimatroid (N ,A) , with e ∈ N . This closure set makes possible to represent the
players who are controlled by him.

Proposition 1. Let (N ,A) be an antimatroid and e ∈ N . Then,

{e} = {e′ ∈ N : e ∈ Pe′ }.
That is, {e} is the set of players controlled by e.

Proof. Recall that {e} = N \ int (N \ {e}). Let e′ ∈ N such that e ∈ Pe′ . Suppose
that e′ /∈ {e}, that is, e′ ∈ int (N \ {e}) . Then there exists T ∈ A(e′) such that T ⊆
int (N \ {e}) . Hence e /∈ T and it is not possible because e ∈ Pe′ .

To prove the another inclusion, we take e′ ∈ {e} and T ∈ A(e′). If we suppose
that e /∈ T , so we have T ⊆ N \ {e} and, also, e′ ∈ T ⊆ int (N \ {e}) , but it is a
contradiction.

Now, we can establish that the following classical games are interior operator games.

Example 3. Games on permission structures (van den Brink, 1997; Gilles, Owen, and
van den Brink 1992). In a hierarchical situation among the players of a finite set N ,
a directed tree, we can consider the vector of the profits obtained from each player,
w ∈ RN

+ . The disjunctive case proposes that a coalition S is feasible if and only if for
every e ∈ S there exists some of its predecessors in S. The set of these feasible coalitions
and the empty set define an antimatroid, which is characterized in Algaba et al. (2004)
as the antimatroid with the denominated path property. The conjunctive case supposes
that a coalition S is feasible if and only if for every e ∈ S all its predecessors belong
to S. In Algaba et al. (2004) the authors also characterized these set systems as poset
antimatroids. Then, in both cases, the games considered in Gilles, Owen, and van den
Brink (1992) and van den Brink (1997), when we take the vector w, are interior operator
games.

Example 4. Peer group games (Brânzei, Fragnelli, and Tijs, 2002). Given a finite set
of players N and a rooted tree T among them (the root is denoted by 1), the peer group
situation is denoted by (N , P, w) where P is the family of the peer groups [1, e] in
T for all e ∈ N and w ∈ RN

+ . The peer group game is the cooperative game (N , v)



146 BILBAO ET AL.

described by

v(S) =
∑

{e∈S:[1,e]⊆S}
we,

which coincides with the interior operator game (N , wA) for the poset antimatroid A
such that its paths are the elements of P . We are considering that [1, e] is the set of
predecessor players of e and successor of 1 in T .

Example 5. Big boss games (Muto et al. 1987). A big boss game is a cooperative game
(N , v) where a player 1 ∈ N , called the big boss, and v satisfy

• v ≥ 0, and v (N ) ≥ v (N \ {e}) for all e ∈ N ,

• v(S) = 0 if 1 /∈ S,

• v (N ) − v (N \ T ) ≥ ∑
e∈T [v (N ) − v (N \ {e})] if 1 /∈ T .

Thus, every interior operator game (N , wA) where A is the poset antimatroid

A = {S ⊆ N : 1 ∈ S} ∪ {∅} ,

is a big boss game (see Example 1 taking C = {1}).

Example 6. Clan games (Muto, Poos, Potters and Tijs, 1989). Clan games are a gen-
eralization of big boss games. In this case, the cooperative game (N , v) has a coalition
∅ �= C ⊆ N , called the clan, with the same properties as the big boss (replacing to {1}
by C). Then, if v is a vector w ∈ RN

+ we can consider C like a player and resolve the big
boss interior operator game. Finally, we distribute the payment of C among its players,
giving them the same worth. We propose here modified clan games. In this case we admit
as feasibles the coalitions contained in the clan set C . Thus, the interior operator games
(N , wA) where A is the poset antimatroid

A = {S ⊆ N : S ⊆ C or C ⊆ S} ,

(see Example 1) allow to study these games when we take a vector as worths.

Example 7. Information market games (Muto, Potters, and Tijs, 1986). Let N a finite
set of firms and w ∈ RN

+ the vector of the possible profits for each firm if they sell their
products in a market. An information market game assumes the existence of a subset of
firms I ⊆ N , |I | ≥ 2, with certain necessary information about the market. Furthermore,
if a coalition does not contain some informed firm then it can not sell in the market. This
game is the interior operator game (N , wA) with the antimatroid (see Example 2)

A = {S ⊆ N : S ∩ I �= ∅} ∪ {∅} .
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Example 8. We consider a network defined by a source r , several customers {1, . . . , n}
and a digraph G rooted in r. In this case, the set of players is N = {r, 1, . . . , n}. The
connection with the source produces a profit for each player, we, and now we want to
allocate the total benefit among the players. We take as feasible coalitions all the directed
path since the source in G and their unions, this family A of sets, form the line-search
antimatroid in the graph G (see Example 2.10 in Korte, Lóvasz, and Schrader (1991)).
Then, this situation can be studied with the interior operator game (N , wA).

Proposition 2. An interior operator game (N , wA) is monotonic and superadditive.

Proof. Let (N , wA) an interior operator game. Let us suppose that S ⊆ T ⊆ 2N .

Because int(S) ⊆ int(T ) we have w(int(S)) ≤ w(int(T )) and so wA is a monotonic
game.

In order to prove that wA is superadditive, we consider now S, T ⊆ 2N satisfying
S ∩ T = ∅. Then int(S) ∪ int(T ) ⊆ int(S ∪ T ) and

wA (S ∪ T ) = w (int (S ∪ T )) ≥ w (int (S) ∪ int(T ))

= w (int(S)) + w (int (T ))

= wA(S) + wA (T ) ,

since int(S) ∩ int(T ) = ∅.

Remark 1. In the previous section, we said that the dual structure of an antimatroid is
a convex geometry. Then, if (N ,L) is a convex geometry and w ∈ RN

+ we can define a
closure game as the cooperative game (N , wL) with

wL(S) = w(S),

for all S ⊆ N . We can observe that the dual game of this closure game is the interior
operator game (N , wA), where A is the dual antimatroid of this convex geometry,

(wL)∗(S) = wL(N ) − wL(N \ S) = w(N ) − w(N \ S)

= w(N \ N \ S) = w(int(S)) = wA(S).

Hence, closure games are subadditive (we can use them as cost games) and we would
study this family of games through interior operator games. This idea can be applied
to resolve cost allocation games. A cost allocation game is defined by Meggido (1978).
He considered a tree rooted in r where the other vertices are the players and the cost of
each edge. The worth of a coalition is the sum of the worths of the unique paths to the
root of its players. Then, we associate to a player e the cost of the unique edge going in
e and we have a vector in RN

+ . The feasible coalitions are the same of the Example 4,
in this case a poset antimatroid (convex geometry in particular) because we have a tree.
The game described by Meggido is the closure game on this structure with the defined
vector.
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Theorem 3. An interior operator game (N , wA) is a convex game if and only if we = 0
for all e ∈ N such that |A(e)| ≥ 2.

Proof. Let us suppose that the interior operator game (N , wA) is convex. Let e ∈ N
such that |A(e)| ≥ 2 and take S, T ∈ A(e), S �= T . Then, as S ∪ T ∈ A, we have

wA (S ∪ T ) + wA (S ∩ T ) = w (S ∪ T ) + w (int (S ∩ T ))

= w (S) + w(T ) − w(S ∩ T ) + w (int (S ∩ T ))

= w (S) + w(T ) − w ((S ∩ T ) \ int (S ∩ T ))

= wA (S) + wA(T ) − w ((S ∩ T ) \ int (S ∩ T ))

≥ wA (S) + wA(T )

where the last inequality is true because wA is convex. Therefore, we obtain w((S ∩ T )\
int(S ∩ T )) = 0 and then we = 0 because e ∈ S ∩ T and e /∈ int(S ∩ T ) since
S, T ∈ A(e).

Now we will prove the reverse implication. Let S, T ⊆ N . It is verified that
int(S) ∪ int(T ) ⊆ int(S ∪ T ), int (S ∩ T ) ⊆ int(S) ∩ int(T ) and so

wA (S ∪ T ) + wA (S ∩ T )

= w (int (S ∪ T )) + w (int (S ∩ T ))

≥ w (int(S) ∪ int (T )) + w (int (S ∩ T ))

= w(int(S)) + w (int (T )) − w (int(S) ∩ int (T )) + w (int (S ∩ T ))

= w(int(S)) + w (int (T )) − w ((int(S) ∩ int (T )) \ int (S ∩ T ))

= wA(S) + wA (T ) − w ((int(S) ∩ int (T )) \ int (S ∩ T )) .

If e′ ∈ [(int(S) ∩ int (T )) \ int (S ∩ T )] there exist e-paths, R1 and R2, such that R1 ⊆
int(S), R2 ⊆ int (T ) , but it is not possible that R1 = R2 because in this case R1 ⊆
(int(S) ∩ int (T )) ⊆ S ∩ T and then e′ must belong to int (S ∩ T ) . So, for all e′ ∈
[(int(S) ∩ int (T )) \ int (S ∩ T )] we have

∣∣A(e′)
∣∣ ≥ 2, and by assumption we′ = 0. We

conclude

w ((int(S) ∩ int (T )) \ int (S ∩ T )) = 0,

and thus wA is convex.

Corollary 4. Let (N ,A) be a fixed antimatroid. Every interior operator game (N , wA)
is convex if and only if (N ,A) is a poset antimatroid.

Proof. Follows from the above theorem and property PA.

The interior operator games defined by conjunctive approach of permission games,
peer group games, big-boss games or modified clan games are convex for all w ∈ RN

+ .
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Balanced games play an important role in game theory because they have reasonable
allocations of the profits. We will prove that the interior operator games are balanced.

Theorem 5. An interior operator game (N , wA) is totally balanced.

Proof. We will prove that the core of the subgame (S, (wA)S) is nonempty, for each
S ⊆ N . Let us consider the vector x ∈ RS

+ which components are

xe =
{
we if e ∈ int(S),

0 if e ∈ S \ int(S).

So, we have

x(S) = w(int(S)) = (wA)S (S),

and for T ⊂ S,

x(T ) = w(T ∩ int(S)) ≥ w(int(T )) = (wA)S (T ).

Hence, (N , wA) is totally balanced.

In view of the above theorem, any interior operator game (N , wA) is balanced and
the vector w always is in C (N , wA) . In particular, it is possible to determine the core
using only the feasible coalitions,

C (N , wA) = {x ∈ RN
+ : x(N ) = w(N ), x(S) ≥ w(S) for all S ∈ A}.

Because if x ∈ RN
+ satisfies x(S) ≥ w(S), ∀S ∈ A, then for every non feasible T ⊂ N

we have x(T ) ≥ x(int(T )) ≥ w(int(T )) = wA(T ).

4. The Shapley and Banzhaf values

A value for a cooperative game (N , v) is a solution concept that assigns to each game
just one payment for each player. That is, a function � : � (N ) → RN where � (v) is the
allocation vector that corresponds to the game (N , v). For a cooperative game v ∈ � (N ) ,

the Shapley Sh(N , v) and Banzhaf Ba(N , v) values are given by the following formulas:

Shi (N , v) =
∑

{S⊆N :i∈S}

�v(S)

|S| , Bai (N , v) =
∑

{S⊆N :i∈S}

�v(S)

2|S|−1
,

for all i ∈ N , where �v(S) = ∑
T ⊆S (−1)|S|−|T | v(T ) is the Harsanyi dividend (see

Harsanyi and Selten, 1988) of the nonempty coalition S ⊆ N . In this section we cal-
culate the Harsanyi dividends of the interior operator games and using them we obtain
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the Shapley and the Banzhaf values. First, we need to introduce a new concept about
antimatroids.

Definition 3. Let (N ,A) be an antimatroid. A feasible set S ∈ A is a block if there
exists e ∈ S such that S is union of e-paths. In this case, S is called e-block.

By definition, any path of an antimatroid is a block. For all the poset antimatroids
the only blocks are the paths, and the only antimatroids with this condition are the poset
antimatroids.

Example 9. Let us consider the antimatroid on N = {1, 2, 3, 4, 5} whose paths are

A (1) = {{1}} , A (2) = {{2}} , A (3) = {{1, 3}, {2, 3}}
A (4) = {{2, 3, 4}, {1, 3, 4, 5}} , A (5) = {{1, 3, 5}, {2, 3, 4, 5}} .

Then, {1, 2, 3} is a 3-block and N is a 4-block and a 5-block.

From the above example we observe that the element e which defines a block like
union of its paths is not unique necessarily. Then we introduce the next notation for a
block S in an antimatroid (N ,A) ,

QS = {e ∈ S : S is an e-block}.

We will use the following lemma in the process of calculation of the Harsanyi
dividends.

Lemma 6. Let N be a finite set and R, S ∈ 2N such that R ⊆ S. Then,

∑
T ∈[R,S]

(−1)s−t =
{

0 if R �= S,

1 if R = S,

where s = |S|, t = |T | and [R, S] = {T ⊆ N : R ⊆ T ⊆ S}.

Proof. Let t ∈ [r, s] a fixed number. Because the number of sets T ∈ [R, S] which
have cardinality t is ( s−r

t−r ), we have

∑
T ∈[R,S]

(−1)s−t =
s∑

t=r

(
s − r

t − r

)
(−1)s−t =

s−r∑
t=0

(
s − r

t

)
(−1)s−r−t

= (−1)s−r
s−r∑
t=0

(
s − r

t

)
(−1)t .
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Hence, if r �= s, ∑
T ∈[R,S]

(−1)s−t = (−1)s−r (1 − 1)s−r = 0,

and otherwise,
∑

T ∈[R,S] (−1)s−t = 1.

Although we are already prepared to justify how the dividends can be calculated
in an interior operator game, we need to introduce the following notation. Given an
antimatroid (N ,A) and an e-block S, we will denote by ne,S

i the number of different ways
in those that S can express as union of i e-paths. We will denote �A

w(S) the Harsanyi
dividend of the interior operator game (N , wA) for the coalition S ⊆ N .

Theorem 7. The Harsanyi dividends of an interior operator game (N , wA) are

�A
w(S) =

{ ∑
e∈QS

λS
e we if S is a block,

0 otherwise,

where

λS
e =

m∑
i=1

(−1)i−1 ne,S
i

and m is the number of the e-paths contained in S.

Proof. By definition, the Harsanyi dividends are

�A
w(S) =

∑
T ∈[∅,S]

(−1)|S|−|T | wA (T ) =
∑

T ∈[∅,S]

(−1)|S|−|T | w (int (T ))

=
∑

T ∈[∅,S]

(−1)|S|−|T | ∑
e∈int(T )

we

=
∑

e∈int(S)

( ∑
{T ∈[∅,S]:e∈int(T )}

(−1)|S|−|T |
)

we,

since e ∈ int (T ) for some T ∈ [∅, S] if and only if e ∈ int(S).
Given T ∈ [∅, S] , we can observe that e ∈ int (T ) if and only if T contains some

e-path. Since S is a block, let us consider all e-paths R1, . . . , Rm contained in S. Then

{T ∈ [∅, S] : e ∈ int (T )} = {T ⊆ S : T ⊇ Ri for some 1 ≤ i ≤ m} =
m⋃

i=1

[Ri , S] .

If we denote λS
e the number

λS
e =

∑
{T ∈[∅,S]:e∈int(T )}

(−1)|S|−|T | ,
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we claim that

λS
e =

∑
T ∈⋃i=m

i=1 [Ri ,S]

(−1)|S|−|T |

=
m∑

i=1

∑
T ∈[Ri ,S]

(−1)|S|−|T | −
m∑

i=1

m∑
j=i+1

∑
T ∈[Ri ∪R j ,S]

(−1)|S|−|T |

+
m∑

i=1

m∑
j=i+1

m∑
k= j+1

∑
T ∈[Ri ∪R j ∪Rk ,S]

(−1)|S|−|T |

− · · · + (−1)m−1
∑

T ∈[
⋃i=m

i=1 Ri ,S]

(−1)|S|−|T | .

We will prove the last equality as follow. Suppose that T ∈ ⋃i=m
i=1 [Ri , S] contains only

p of the e−path R1, . . . , Rm contained in S. Then T appears p times in the first sum, ( p
2 )

times in second, ( p
3 ) in third and so forth until the sum p, that is the last one, in which T

appears a single time, since T has p only of those e-paths. In total the number of times
that T appears in the second member of the equality is one, since

p∑
i=1

(
p

i

)
(−1)i−1 = −

[(
p∑

i=0

(
p

i

)
(−1)i

)
− 1

]
= −[(1 − 1)p − 1] = 1.

Note that the previous lemma implies that all the terms of the last expression are
zero unless the union of the paths at issue be S. So, if S �= ⋃i=m

i=1 Ri (that is, S is not an
e-block), the coefficient λS

e = 0. Otherwise, if S is an e-block, we obtain

λS
e =

m∑
i=1

(−1)i−1 ne,S
i .

Lastly, including these results in the initial formula, we obtain

�A
w(S) =

∑
e∈int(S)

λS
e we =

∑
e∈QS

λS
e we,

and prove the assertion.

Corollary 8. Let (N ,A) be an antimatroid and S an e-block, then

λS
e = 1 −

∑
{T ∈(∅,S):T is an e-block}

λT
e .



VALUES FOR INTERIOR OPERATOR GAMES 153

Proof. We will use the recursive formula of the Harsanyi dividends (see Harsanyi and
Selten, 1988), and w ∈ RN

+ such that we′ = 0 for all e′ �= e. So,

�A
w(S) = wA(S) −

∑
T ∈[∅,S)

�A
w (T )

= w (int(S)) −
∑

T ∈(∅,S)

∑
e′∈QT

λT
e′we′

= we −
∑

{T ∈(∅,S):T is an e′-block}
λT

e′we′

=
(

1 −
∑

{T ∈(∅,S):T is an e-block}
λT

e

)
we,

and, by above theorem, �A
w(S) = ∑

e∈QS
λS

e we. Thus, taking we = 1 for instance, we
obtain the result.

Note that it has also been obtained in the previous proof that if S is not an e-block
but e ∈ int(S), then ∑

{T ∈(∅,S):T is an e-block}
λT

e = 1.

This corollary gives a recursive formula to obtain the dividends by an easier method.

Example 10. Let w ∈ RN
+ . We consider the interior operator game (N , wA) where

N = {1, 2, 3, 4, 5} and (N ,A) is the antimatroid with the following paths:

A (1) = {{1}}, A (2) = {{2}}, A (3) = {{3}}, A (4) = {{1, 4} , {2, 3, 4, 5}},
A (5) = {{1, 2, 5}, {1, 3, 5}, {2, 3, 5}, {1, 4, 5}}.

To obtain the dividends we determine the coefficients λS
e . This coefficient is 1 if the block

is a path. We mark the coefficient of each block with a circle.
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S �A
w (S) S �A

w (S) S �A
w (S)

{1} w1 {2, 3, 4, 5} w4 {1, 4, 5} w5

{2} w2 {1, 2, 5} w5 {1, 2, 3, 5} −2w5

{3} w3 {1, 3, 5} w5 {1, 3, 4, 5} −w5

{1, 4} w4 {2, 3, 5} w5 {1, 2, 4, 5} −w5

N −w4 + w5

Corollary 9. If (N , wA) is an interior operator game with (N ,A) a poset antimatroid
then

�A
w(S) =

{
we if S is e-path,

0 otherwise.

Now, we are going to formulate the Shapley and the Banzhaf values.

Theorem 10. If (N , wA) is an interior operator game, the Shapley and the Banzhaf
values are, for every e ∈ N ,

She (N , wA) =
∑

{e′∈N :e∈Pe′ }

( ∑
{S e′-block:e∈S}

λS
e′

|S|

)
we′,

Bae (N , wA) =
∑

{e′∈N :e∈Pe′ }

( ∑
{S e′-block:e∈S}

λS
e′

2|S|−1

)
we′ .

Proof. The Shapley value is given by

She (N , wA) =
∑

{S⊆N .e∈S}

�A
w(S)

|S| =
∑

{S block:e∈S}

1

|S|
∑

e′∈QS

λS
e′we′

=
∑

{e′∈N :e∈Pe′ }

( ∑
{S e′-block:e∈S}

λS
e′

|S|

)
we′,

where we have used that if S is an e′-block with e ∈ S then (like an e′-path such that
contains e exists), e ∈ Pe′

; and if e′ ∈ N with e ∈ Pe′
then e belongs to some e′-path

which is an e′-block.
The Banzhaf value is obtained in the same form.

We observe in the above theorem that a player e is able to keep his profit (that is,
She (N , wA) and Bae (N , wA) are greater than we) if and only if it is an atom. So, for
each player e ∈ N of an interior operator game (N , wA), we interpret the set Pe as the
players on whom e depends.
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Corollary 11. Given an interior operator game (N , wA) such that (N ,A) is a poset
antimatroid, the Shapley and the Banzhaf values are, for every e ∈ N ,

She (N , wA) =
∑

{e′∈N :e∈Pe′ }

we′

|Pe′ | , Bae (N , wA) =
∑

{e′∈N :e∈Pe′ }

we′

2|Pe′ |−1
,

where Pe′
is the unique e′-path.

Example 11. Let (N , wA) be an interior operator game defined by a clan game with
clan coalition C � N . Observe that if e ∈ C the unique e-path is {e} and if e /∈ C then
Pe = C ∪ {e}. Thus, applying the above corollary, it follows that

She (N , wA) =




we + w (N \ C)

|C | + 1
if e ∈ C,

we

|C | + 1
if e /∈ C.

Example 12. Let (N , wA) be an interior operator game defined by an information market
game with informed coalition I ⊆ N , |I | ≥ 2. The Shapley value, calculated using the
last theorem, is

She (N , wA) =




we + w (N \ I )
|I |−1∑
k=0

(|I | − 1

k

)
1

k + 2
if e ∈ I,

we

|I |∑
k=1

(|I |
k

)
1

k + 1
if e /∈ I.

Example 13. In Example 10 we observe that the Shapley value assigns to the atoms the
following values:

Sh1 (N , wA) = w1 + 3
10w4 + 1

5w5,

Sh2 (N , wA) = w2 + 1
20w4 + 7

60w5,

Sh3 (N , wA) = w3 + 1
20w4 + 7

60w5.

The non-atom players obtain the following payoffs

Sh4 (N , wA) = 11
20w4 + 1

30w5,

Sh5 (N , wA) = 1
20w4 + 8

15w5.
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5. The Tijs value

For a game v ∈ �(N ), we define the upper vector Mτ,v = (Mτ,v
i )i∈N , with components

Mτ,v
i = v (N ) − v (N \ {i}), and the lower vector mτ,v(v) = (mτ,v

i )i∈N ,

mτ,v
i = max

{S⊆N :i∈S}
[v(S) − Mτ,v (S \ {i})] , i ∈ N ,

where Mτ,v (S \ {i}) = ∑
j∈S\{i} Mτ,v

j . The Tijs value or τ -value is defined only on the
set Q B (N ) of quasibalanced games, i.e., games that satisfy

mτ,v ≤ Mτ,v and
∑
i∈N

mτ,v
i ≤ v (N ) ≤

∑
i∈N

Mτ,v
i .

The Tijs value for a game v ∈ � (N ) is the vector

τ (N , v) = mτ,v + α (Mτ,v − mτ,v)

with α ∈ R such that
∑

i∈N τi (N , v) = v(N ). First we need to prove that our games
are quasi-balanced. Since every balanced game is quasibalanced (see Driessen, 1988,
Proposition 3.1 of Chapter III), Theorem 5 allows to prove the claim.

Theorem 12. Let (N , wA) be an interior operator game. Then, for every e ∈ N , the
following hold:

1. Mτ,wA
e = w({e}),

2. mτ,wA
e = max{0, we − ce}, where ce = min

T ∈A(e)

∑
e′∈T \{e}

[w({e′}) − we′].

Proof. We will prove both sentences, let e ∈ N :

1. By definition,

Mτ,wA
e = wA(N ) − wA(N \ {e}) = w(N ) − w (int (N \ {e}))

= w(N \ int (N \ {e})) = w({e}).

2. Recall that

m
τ,wA
e = max

{S⊆N :e∈S}
[wA(S) − M

τ,wA (S \ {e})].

First, we prove that mτ,wA
e ≥ max{0, we − ce}. Taking S = {e}, we have

w(int(S)) −
∑

e′∈S\{e}
w({e′}) = w(S) ≥ 0.
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Also, if T ∈ A(e) is such that ce = ∑
e′∈T \{e}[w({e′}) − we′], then

w(int(T )) −
∑

e′∈T \{e}
w({e′}) = w(T ) −

∑
e′∈T \{e}

w({e′})

= we −
∑

e′∈T \{e}
[w({e′}) − we′]

= we − ce.

Hence, mτ,wA
e ≥ max{0, we − ce}.

On the other hand, if S ⊆ N we must have

w(int(S)) −
∑

e′∈S\{e}
w({e′}) ≤ w(int(S)) −

∑
e′∈int(S)\{e}

w({e′}).

If e /∈ int(S),

w(int(S)) −
∑

e′∈int(S)\{e}
w({e′}) = w(int(S)) −

∑
e′∈int(S)

w({e′}) ≤ 0,

but if e ∈ int(S), so there exists T ∈ A(e) verifying T ⊆ int(S). Thus,

w(int(S)) −
∑

e′∈int(S)\{e}
w({e′}) = we + w(int(S) \ {e}) −

∑
e′∈int(S)\{e}

w({e′})

= we −
∑

e′∈int(S)\{e}
[w({e′}) − we′]

≤ we −
∑

e′∈T \{e}
[w({e′}) − we′] ≤ we − ce.

Therefore, mτ,wA
e ≤ max{0, we − ce}.

We note that the maximum expected payoff for a player is the sum of the profits he
controls. The lower vector is determined only checking the paths of the player. In some
cases, this calculation is easier.

Corollary 13. An interior operator game (N , wA), where (N ,A) is a coatomic antima-
troid, verifies C(N , wA) = {τ (N , wA)} = {w}.

Proof. We will use the Proposition 3.4 of the Chapter III in Driessen (1988). It is
sufficient that Mτ,wA(S) ≥ wA(S) for all S ⊆ N and Mτ,wA (N ) = wA (N ) to conclude
that C (wA) = {τ (N , wA)}. As A is coatomic, then {e} = {e} for every e ∈ N . Hence,
if S ⊆ N

Mτ,wA(S) =
∑
e∈S

w({e}) = w(S) ≥ w (int(S)) = wA(S)
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because w ∈ RN
+ , and

Mτ,wA (N ) =
∑
e∈N

w({e}) = w(N ) = wA (N ) .

Then C (N , wA) = {τ (N , wA)} and since w ∈ C (N , wA) we get the claim.

Example 14. Let (N , wA) be an interior operator game defined by an information market
game with informed coalition I ⊆ N , |I | ≥ 2. Then τ (N , wA) = w using Corollary 13.

Corollary 14. Let (N , wA) be an interior operator game, and e ∈ N . Then,

1. If e ∈ a (A) , mτ,wA
e = we,

2. If |Pe| ≥ 2, mτ,wA
e = 0.

Proof. These are consequence of the above theorem.

1. When e ∈ a (A), ce = 0. Hence, mτ,wA
e = we.

2. If |Pe| ≥ 2 then Pe �= {e} and we have e /∈ a (A). Thus for all T ∈ A(e), there exists
e∗ ∈ T, e∗ �= e.

If T ∈ A(e) is such that ce = ∑
e′∈T \{e}[w({e′})−we], it is obtained we −ce ≤ 0 because

we − ce = −
∑

e′∈T \{e,e∗}
[w({e′}) − we′] − [w({e∗}) − we∗ − we],

where we have used that e∗ ∈ Pe and the last proposition to obtain e ∈ {e∗}. We conclude
that mτ,wA

e = 0.

Corollary 15. An interior operator game (N , wA) , where (N ,A) is an antimatroid
satisfying |Pe| ≥ 2 for all e /∈ a (A) , verifies

τe (N , wA) = pAw
({e}) + (1 − pA) w (int (e)) ,

with

pA = w (N ) − w (a (A))

w (A) − w (a (A))
, w (A) =

∑
e∈N

w({e}).

Proof. By the above corolary the lower vector is

mτ,wA
e =

{
we if e ∈ a (A) ,

0 if e /∈ a (A) .
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Then the Tijs value is a vector in this convex form

τe(N , wA) =
{

(1 − α)we + αw({e}) if e ∈ a(A),

αw({e}) if e /∈ a(A).

= αw({e}) + (1 − α)w(int(e)).

The value τ (N , wA) is an efficient vector, therefore∑
e∈N

τe(N , wA) = (1 − α)w(a(A)) + αw(A) = w(N )

and the coefficient α = pA.

In the last antimatroids the Tijs value is a convex combination of the worths of
the closure and the interior for a player. The coefficient pA is the quotient obtained by
dividing the maximum expected gap into the real gap of the atoms.

Example 15. Let (N , wA) an interior operator game defined by a clan game with clan
coalition C � N . In this case, A(e) = C ∪ {e} if e /∈ a(A). Then, by Corollary 15 the
convex coefficient is

pA = 1

|C | + 1
,

and the Tijs value coincides with the Shapley value

τe(N , wA) =




we + w(N \ C)

1 + |C | if e ∈ C,

we

1 + |C | if e /∈ C.
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