
Generating functions for computing power indices e¢ciently

J. M. Bilbao¤, J. R. Fernández, A. Jiménez Losada, and J. J. López
Matemática Aplicada II, Escuela Superior de Ingenieros
Camino de los Descubrimientos s/n, 41092 Sevilla, Spain

Abstract. The Shapley-Shubik power index in a voting situation depends
on the number of orderings in which each player is pivotal. The Banzhaf power
index depends on the number of ways in which each voter can e¤ect a swing. We
introduce a combinatorial method based in generating functions for computing
these power indices e¢ciently and we study the time complexity of the algorithms.
We also analyze the meet of two weighted voting games. Finally, we compute
the voting power in the Council of Ministers of the European Union with the
generating functions algorithms and we present its implementation in the system
Mathematica.

Mathematics Subject Classi…cation 2000: 91A12.
Keywords: Power indices, generating function, computational complexity

1. Introduction. The analysis of power is central in political science. In general,
it is di¢cult to de…ne the idea of power, but for the special case of voting power there
are mathematical power indices that have been used. The …rst such power index was
proposed by Shapley and Shubik (1954) who apply the Shapley value (1953) to the
case of simple games. Another concept for measuring voting power was introduced
by Banzhaf (1965), a lawyer, whose work has appeared mainly in law journals, and
whose index has been used in arguments in various legal proceedings.

A cooperative game is a function v : 2N ! R; with v(;) = 0: The players are the
elements of N and the coalitions are the subsets S µ N of players. A simple game
is a cooperative game v : 2N ! f0; 1g ; such that v (N) = 1 and v is nondecreasing,
i.e., v(S) µ v(T) whenever S µ T µ N: A coalition is winning if v(S) = 1; and losing
if v(S) = 0. The collection of all winning coalitions is denoted by W: We will use
a shorthand notation and write S [i for the set S [fig. The Shapley value for the
player i 2 N is de…ned by

©i(v) =
X

fSµN : i=2Sg

s!(n¡ s¡ 1)!
n!

(v(S [i)¡ v(S)) ;

where n = jN j, s = jSj. This value is an average of marginal contributions v(S [i)¡
v(S) of the player i to all coalitions S µ N n i. In this value, the sets S of di¤erent
size get di¤erent weight. For simple games, Shapley and Shubik (1954) introduced
the following power index, which is a specialization of the Shapley value.

¤http://www.esi2.us.es/~mbilbao/ E-mail: mbilbao@cica.es

1

Generating functions for computing power indices efficiently 2

Definition 1. The Shapley-Shubik index for the simple game (N; v) is the vector
©(v) = (©1(v); : : : ;©n(v)) ; given by

©i(v) =
X

fS=2W :S[i2Wg

s!(n¡ s¡ 1)!
n!

:

We now de…ne the normalized Banzhaf index. A swing for player i is a pair of
coalitions (S[i; S) such that S[i is winning and S is not. For each i 2 N; we denote
by ´i(v) the number of swings for i in the game v; and the total number of swings is

´(v) =
X
i2N

´i(v):

Definition 2. The normalized Banzhaf index is the vector

¯(v) = (¯1(v); : : : ; ¯n(v)) ; where ¯i(v) =
´i(v)

´(v)
:

Coleman (1973) considered two indices to measure the power to prevent action
and the power to initiate action. In the above notation, these two Coleman indices
are

°i(v) =
´i(v)

!
;

°¤i (v) =
´i(v)

¸
;

where ! and ¸ are the total number of winning and losing coalitions, respectively.
For a comprehensive work on the problem of measuring voting power, see Felsenthal
and Machover (1998).

We introduce a special class of simple games called weighted voting games. The
symbol [q; w1; : : : ; wn] will be used, where the quota q and the weights w1; : : : ; wn are
positive integers with 0 < q ·Pn

i=1wi: Here there are n players, wi is the number of
votes of player i, and q is the quota needed for a coalition to win. Then, the above
symbol represents the simple game v : 2N ! f0; 1g de…ned for all S µ N by

v(S) =

½
1; if w(S) ¸ q
0; if w(S) < q;

where w(S) =
P
i2S wi:

To be self-contained section 2 recalls the main results on generating functions
to obtain Shapley-Shubik and Banzhaf indices. If the input size of the problem is
n, then the function which measures the worst case running time for computing
the indices is in O(2n) : Section 3 introduces the computational complexity and the
algorithms based in the generating functions to obtain these power indices. In sections
4 and 5, we present several algorithms for computing the power indices with the
system Mathematica. The paper concludes with some remarks on the complexity of
generating functions methods for computing power indices in weighted voting games.

Generating functions for computing power indices efficiently 3

2. Generating functions. In order to obtain the power indices exactly, we present
a combinatorial method based in the generating functions. The most useful method
for counting the number of elements f(k) of a …nite set is to obtain its generating
function. The ordinary generating function of f(k) is the formal power seriesX

k¸0
f(k)xk:

This power series is called formal because we ignore the evaluation on particular
values and problems on convergence (see Stanley, 1986). We can work with generating
functions of several variablesX

k¸0

X
j¸0

X
l¸0
f(k; j; l)xkxjxl:

For each n 2 N; the number of subsets of k elements of the set N = f1; 2; : : : ; ng
is given by the explicit formula of the binomial coe¢cientsµ

n

k

¶
=
n(n¡ 1) ¢ ¢ ¢ (n¡ k + 1)

k!
:

A generating function approach to binomial coe¢cients may be obtained as fol-
lows. Let S = fx1; x2; : : : ; xng be an n-element set. Regard the elements x1; x2; : : : ; xn
as independent indeterminates. It is an immediate consequence of the process of mul-
tiplication (one could also give a proof by induction) that

(1 + x1)(1 + x2) ¢ ¢ ¢ (1 + xn) =
X
TµS

Y
xi2T

xi:

Note that if T = ; then we obtain 1: If we put each xi = x; we obtain

(1 + x)n =
X
TµS

Y
x2T

x =
X
TµS

xjT j =
X
k¸0

µ
n

k

¶
xk:

We now present generating functions for computing the Shapley-Shubik and the
Banzhaf power indices in weighted voting games, de…ned by

[q; w1; w2; : : : ; wn] :

David G. Cantor used generating functions for computing exactly the Shapley-
Shubik index for large voting games. As related by Mann and Shapley (1962), Can-
tor’s contribution was the following result (see Lucas, 1975, pp. 214–216). The
Shapley-Shubik index of the player i 2 N; satis…es

©i(v) =
X

fS=2W:S[i2Wg

s!(n¡ s¡ 1)!
n!

=
n¡1X
j=0

j!(n¡ j ¡ 1)!
n!

0@ q¡1X
k=q¡wi

Ai(k; j)

1A ;

Generating functions for computing power indices efficiently 4

where Ai(k; j) is the number of ways in which j players, other than i, can have a sum
of weights equal to k.

Proposition 1. (Cantor) Let [q; w1; w2; : : : ; wn] be a weighted voting game. Then
the generating function of the number Ai(k; j) of coalitions S of j players with i =2 S
and w(S) = k; is given by ShGi(x; z) =

Q
j 6=i (1 + z x

wj) :

Proof. Let W = fw1; w2; : : : ; wng be the set of the weights of all the players. We
consider the following generating function

(1 + z xw1) ¢ ¢ ¢ (1 + z xwn) =
X
TµW

³
zjT j x

P
wi2T wi

´
=

X
k¸0

X
j¸0

A(k; j)xkzj;

where the coe¢cient A(k; j) is the number of coalitions of weight k and size j. To
obtain the numbers Ai(k; j); we drop the factor (1 + z xwi) : ¤

The above approach was applied by Brams and A¤uso (1976) for computing the
normalized Banzhaf index. The number of swings for the player i satis…es

´i(v) = jfS =2 W : S [i 2 Wgj

=

q¡1X
k=q¡wi

bi(k);

where bi(k) is the number of coalitions that do not include i with weight k.

Proposition 2. (Brams-A¤uso) Let [q; w1; w2; : : : ; wn] be a weighted voting game.
Then the generating function of the number bi(k) of coalitions S such that i =2 S; and
w(S) = k; is given by BGi(x) =

Q
j 6=i (1 + xwj) :

Proof. For the weights W = fw1; w2; : : : ; wng ; we consider the generating function

(1 + xw1) ¢ ¢ ¢ (1 + xwn) =
X
VµW

Y
wi2V

xwi

=
X
VµW

³
x
P
wi2V wi

´
=

X
k¸0

b(k)xk;

where b(k) is the number of coalitions with weight k. To obtain the numbers bi(k);
we delete the factor (1 + xwi) : ¤

Generating functions for computing power indices efficiently 5

On the collection of simple games, we de…ne the operation meet ^ by
(v1 ^ v2) (S) = min fv1(S); v2(S)g :

Let v1 = [q; w1; w2; : : : ; wn] ; v2 = [p; p1; p2; : : : ; pn] be weighted voting games.
Then the meet game satis…es

(v1 ^ v2) (S) =
½
1; if w(S) ¸ q and p(S) ¸ p
0; if w(S) < q or p(S) < p:

Proposition 3. Let v1 = [q; w1; w2; : : : ; wn] ; v2 = [p; p1; p2; : : : ; pn] be weighted
voting games. Then the generating function of the number bi(k; r) of coalitions S
such that i =2 S; and w(S) = k; p(S) = r; is given by BGi(x; y) =

Q
j 6=i (1 + xwjypj) :

Proof. For the weightsW = fw1; w2; : : : ; wng and P = fp1; p2; : : : ; png ; we consider
the generating function

(1 + xw1yp1) ¢ ¢ ¢ (1 + xwnypn) =
X
VµW

X
RµP

Y
wi2V

xwi
Y
pj2R

y pj

=
X
VµW

X
RµP

³
x
P
wi2V wi

´³
y
P
pj2R pj

´
=

X
k¸0

X
r¸0

b(k; r)xkyr;

where b(k; r) is the number of coalitions S µ N such that w(S) = k; and p(S) = r.
To obtain the numbers bi(k; r); we delete the factor (1 + xwiypi) : ¤

Proposition 4. Let v1 = [q; w1; w2; : : : ; wn] ; v2 = [p; p1; p2; : : : ; pn] be weighted
voting games. Then the generating function of the number Ai(k; r; j) of coalitions S
of j players such that i =2 S; w(S) = k; and p(S) = r; is given by ShGi(x; y; z) =Q
j 6=i (1 + z x

wjypj) :

3. Computational Complexity. The classical procedures for computing the
power indices are based in the enumeration of all coalitions. Thus, if the input
size of the problem is n, then the function which measures the worst case running
time for computing the indices is in O(2n) : In this section, we will give the algo-
rithms based in the generating functions to obtain these power indices and we study
its computational complexity. Throughout the remainder of this section, we will as-
sume the logarithmic cost model. In this model, if we perform only a polynomial
number of operations on numbers with at most a polynomial number of digits, then
the algorithm will be polynomial (see Gács and Lovász, 1999).

Generating functions for computing power indices efficiently 6

Let f(n) be a function from Z+ to Z+. Recall that we denote O(f(n)) for the
set of all functions g such that f (n) · cg (n) for all n ¸ n0: With this de…nition a
polynomial

Pd
i=0 ain

i is in O
¡
nd
¢
and this means that only the asymptotic behavior

of the function as n!1 is being considered. The programs of our language contain
only assignments and a for-loop construct. We use the symbol Ã for assignments,
for example, g(x)Ã 1 denotes setting the value of g(x) to 1: A for-loop to calculateP
i2I ai; can be de…ned by

hÃ 0
for i 2 I do

hÃ h+ ai
endfor

We denote by DTIME(f(n)) the class of languages whose time complexity is at
most f(n): We say that a language has space complexity at most f(n); if it can be
decided by a Turing machine with space demand (cells and tapes) at most f(n): This
class is denoted by DSPACE(f(n)). The storage demand of a k-tape Turing machine
is at most k times its time demand (in one step, at most k cells will be written).
Therefore, DTIME(f(n)) ½ DSPACE(f(n)).
Theorem 5. Let [q; w1; : : : ; wn] be a weighted voting game. If C is the number of
nonzero coe¢cients of BG(x); then the time complexity of the generating algorithm
for the Banzhaf indices is O

¡
n2C

¢
.

Proof. Let i be a player, the function BGi(x) =
Q
j 6=i (1 + xwj) is given by

BG(x)Ã 1
for j 2 f1; : : : ; ng with j 6= i do
BG(x)Ã BG(x) +BG(x)xwj

endfor
The time to compute the line in the loop is in O(C) for every player. Thus the

time to compute this function is O(nC) : We take BGi(x) =
P
k¸0 b

i(k)xk; for every
player i 2 N , and consider the for loop

wÃ wi
sÃ 0
for k 2 fq ¡w; : : : ; q ¡ 1g do

sÃ s+ bi(k)
endfor

The time spent in the above loop is O(C) ; since in the sum we only consider the
nonzero coe¢cients and the total time in the procedure is O(nC) : If this procedure
is executed n times, we obtain the indices of the n players. ¤

Corollary 6. Let v1 = [q; w1; : : : ; wn] ; v2 = [p; p1; : : : ; pn] be weighted voting
games. If C is the number of nonzero coe¢cients of BG (x; y) ; then the time complex-
ity of the generating algorithm for the Banzhaf indices of the meet game is O

¡
n2C

¢
.

Generating functions for computing power indices efficiently 7

Remark 1. If the weighted n-voting game satis…es wi = w; for every player i 2 N
then the number C of nonzero coe¢cients of BG(x) is n+ 1: For weighted n-voting
games such that all the sums of the weights are di¤erent, the number C = 2n:

Theorem 7. Let [q; w1; : : : ; wn] be a weighted voting game. If C is the number of
nonzero coe¢cients of ShG(x; z); then the time complexity of the generating algo-
rithm for the Shapley-Shubik indices is O

¡
n2C

¢
.

Proof. The time to compute the function ShGi(x; z) =
Q
j 6=i (1 + z x

wj) ; with a
for loop is O(nC) ; for every player. Also, there are two independents for loops:

wÃ wi
gg(z)Ã 0
for k 2 fq ¡w; : : : ; q ¡ 1g do

gg(z)Ã gg(z) +Ai(k; j) zj

endfor
Thus we obtain the polynomial gg(z) =

Pn¡1
j=0 bjz

j; whose coe¢cients appears in
the next sum,

tÃ 0
for j 2 Z with 0 · j · n¡ 1 do

tÃ t+ bj(n¡ j ¡ 1)!j!
endfor
t=n!

The factorial function takes O(n); and n · C: Thus we can calculate the index
for player i in time O(nC) : For the n players, this procedure is executed n times. ¤

Corollary 8. Let v1 = [q; w1; : : : ; wn], v2 = [p; p1; : : : ; pn] be weighted voting
games. If C is the number of nonzero coe¢cients of ShG (x; y; z) ; then the time
complexity of the generating algorithm for the Shapley-Shubik indices of the meet
game is O

¡
n2C

¢
.

Remark 2. Since DTIME(f(n)) ½ DSPACE(f(n)), the generating algorithms de-
scribed above have polynomial space complexity.

4. Algorithms with Mathematica. We present several algorithms for comput-
ing the power indices with the system Mathematica. The procedure is similar to
present by Tannenbaum (1997), but in our algorithms we delete Expand in the de…ni-
tion of the generating function and we use Apply[Plus,]. Furthermore, we compute the
voting power in the Council of Ministers of the European Union with the generating
functions algorithms.

The game of the power of the countries in the EU Council is de…ned by

N = fGE, UK, FR, IT, SP, NE, GR, BE, PO, SW, AU, DE, FI, IR, LUg ;
v = [q; 10; 10; 10; 10; 8; 5; 5; 5; 5; 4; 4; 3; 3; 3; 2] ;

Generating functions for computing power indices efficiently 8

where q = 62 or q = 65: Of course the classical procedures runs in time exponential
2n; where n is the number of players. In general, we cannot hope for a polynomial
time complexity for the generating functions algorithms, but in many problems we
obtain polynomial time whenever the number of coe¢cients and the maximum of the
weights are polynomial in n.

The notebook of Mathematica for computing the classical index power is the
following.

In[1] :=

votesUE={10,10,10,10,8,5,5,5,5,4,4,3,3,3,2};

In[2] :=

VUE=N[%/Plus @@ %,3]

Out[2]=

{0.115, 0.115, 0.115, 0.115, 0.092, 0.0575, 0.0575, 0.0575,
0.0575, 0.046, 0.046, 0.0345, 0.0345, 0.0345, 0.023}

The function BanzhafG computes the generating function for computing the Banzhaf
index of a weighted voting game, given by a list of integer weights.

In[3] :=

BanzhafG[weights_List]:=Times @@ (1+x^weights)

We can …nd the complexity bound C for the function BanzhafG in the EU-game,
as follows:

In[4] :=

Length[BanzhafG[votesUE]//Expand]

Out[4]=

86

The function BanzhafIndexPlus computes the normalized Banzhaf index of player
i by summing the appropriate coe¢cients in this generating function. Dividing the
index of each player by the sum of all the indices gives the BanzhafPowerPlus distri-
bution.

In[5] :=

Generating functions for computing power indices efficiently 9

BanzhafIndexPlus[i_,weights_List,q_Integer]:=
Module[{delw,sw,g,coefi},
delw=Delete[weights,i];
sw=Apply[Plus,delw];
g=BanzhafG[delw];
coefi=CoefficientList[g,x];
Apply[Plus,coefi[[Range[Max[1,q-weights[[i]]+1],Min[q,sw]]]]]]

In[6] :=

BanzhafPowerPlus[weights_List,q_Integer]:= # /(Plus @@ #)& @
Table[BanzhafIndexPlus[i,weights,q],{i,Length[weights]}]

In[7] :=

Timing[BanzhafPowerPlus[votesUE,62]]

Out[7]=

{0.8*Second, {1849/16565, 1849/16565, 1849/16565, 1849/16565,
1531/16565, 973/16565, 973/16565, 973/16565, 973/16565,
793/16565, 793/16565, 119/3313, 119/3313, 119/3313, 75/3313}}

In[8] :=

Ban62=N[%[[2]],3]

Out[8]=

{0.112, 0.112, 0.112, 0.112, 0.0924, 0.0587, 0.0587, 0.0587,
0.0587, 0.0479, 0.0479, 0.0359, 0.0359, 0.0359, 0.0226}

In[9] :=

Timing[BanzhafPowerPlus[votesUE,65]]

Out[9]=

{0.8*Second, {1227/11149, 1227/11149, 1227/11149, 1227/11149,
1033/11149, 671/11149, 671/11149, 671/11149, 671/11149,
507/11149, 507/11149, 411/11149, 411/11149, 411/11149,
277/11149}}

In[10]:=

Generating functions for computing power indices efficiently 10

Ban65=N[%[[2]],3]

Out[10]=

{0.11, 0.11, 0.11, 0.11, 0.0927, 0.0602, 0.0602, 0.0602,
0.0602, 0.0455, 0.0455, 0.0369, 0.0369, 0.0369, 0.0248}

The number of coalitions of weight k and size j is the coe¢cient of xkzj in the
generating function ShG for the Shapley-Shubik index. The function ShPowerPlus
computes the Shapley-Shubik power distribution with the implementation in Mathe-
matica of Tannenbaum and the modi…cations mentioned above.

In[11]:=

ShG[weights_List]:=Times @@ (1+z x^weights)

The complexity bound C for the function ShG in the EU-game is

In[12]:=

Length[ShG[votesUE]//Expand]

Out[12]=

338

In[13]:=

ShPowerPlus[weights_List,q_Integer]:=
Module[{n=Length[weights],delw,sw,g,coefi,gg},
Table[delw=Delete[weights,i];
sw=Apply[Plus,delw]+1;
g=ShG[delw];
coefi=CoefficientList[g,x];
gg=Apply[Plus,coefi[[
Range[Max[1,q-weights[[i]]+1],Min[q,sw]]]]];
Sum[Coefficient[gg,z,j] j! (n-j-1)!,{j,n-1}],{i,n}]/n!]

In[14]:=

Timing[ShPowerPlus[votesUE,62]]

Out[14]=

Generating functions for computing power indices efficiently 11

{4.2*Second, {7/60, 7/60, 7/60, 7/60, 860/9009, 19883/360360,
19883/360360, 19883/360360, 19883/360360, 743/16380,
743/16380, 1588/45045, 1588/45045, 1588/45045, 932/45045}}

In[15]:=

Sh62=N[%[[2]],3]

Out[15]=

{0.117, 0.117, 0.117, 0.117, 0.0955, 0.0552, 0.0552, 0.0552,
0.0552, 0.0454, 0.0454, 0.0353, 0.0353, 0.0353, 0.0207}

In[16]:=

Timing[ShPowerPlus[votesUE,65]]

Out[16]=

{4.2*Second, {21733/180180, 21733/180180, 21733/180180,
21733/180180, 4216/45045, 2039/36036, 2039/36036,
2039/36036, 2039/36036, 3587/90090, 3587/90090,
2987/90090, 2987/90090, 2987/90090, 1667/90090}}

In[17]:=

Sh65=N[%[[2]],3]

Out[17]=

{0.121, 0.121, 0.121, 0.121, 0.0936, 0.0566, 0.0566, 0.0566,
0.0566, 0.0398, 0.0398, 0.0332, 0.0332, 0.0332, 0.0185}

In[18]:=

TableForm[Transpose[{VUE,Ban62,Ban65,Sh62,Sh65}],
TableHeadings->{countries,{’’VUE’’,’’Ban 62’’,’’Ban 65’’,
’’Sh 62’’,’’Sh 65’’}}]

Out[18]=

Generating functions for computing power indices efficiently 12

Country VUE Ban 62 Ban 65 Sh 62 Sh 65
Germany .115 .112 .11 .117 .121
U. Kingdom .115 .112 .11 .117 .121
France .115 .112 .11 .117 .121
Italy .115 .112 .11 .117 .121
Spain .092 .0924 .0927 .0955 .0936
Netherlands .0575 .0587 .0602 .0552 .0566
Greece .0575 .0587 .0602 .0552 .0566
Belgium .0575 .0587 .0602 .0552 .0566
Portugal .0575 .0587 .0602 .0552 .0566
Sweden .046 .0479 .0455 .0454 .0398
Austria .046 .0479 .0455 .0454 .0398
Denmark .0345 .0359 .0369 .0353 .0332
Finland .0345 .0359 .0369 .0353 .0332
Ireland .0345 .0359 .0369 .0353 .0332
Luxembourg .023 .0226 .0248 .0207 .0185

Table 1

The next table shows the time in seconds for the new functions and the classical
algorithms BanzhafIndex and ShapleyValue3, based in the potential of Hart and Mas-
Colell (1988) which is implemented by Carter (1993).

q BanzhafIndex BanzhafPowerPlus ShapleyValue3 ShPowerPlus
62 6285.24 0.824 442.15 4.174
65 6050.04 0.824 464.07 4.229

Table 2

5. Power in 2-weighted voting games. To study the meet of the weighted
voting games given by the votes in the EU Council and the population of the EU
countries, we introduce the index PUE and the integer weights (obtained by roundo¤)
according to this population. The notebook of Mathematica to calculate power indices
in 2-weighted voting games is the following.

In[1] :=

votesUE={10,10,10,10,8,5,5,5,5,4,4,3,3,3,2};

In[2] :=

population={80.61,57.96,57.53,56.93,39.11,15.24,10.35,
10.07,9.86,8.69,7.91,5.18,5.06,3.56,0.4};

Generating functions for computing power indices efficiently 13

In[3] :=

PUE=N[%/Plus @@ %,3];

Out[3]=

{0.219, 0.157, 0.156, 0.155, 0.106, 0.0414, 0.0281, 0.0273,
0.0268, 0.0236, 0.0215, 0.0141, 0.0137, 0.00966, 0.00109}

The fuction Round[x] gives the integer closest to x: For numbers such that x:5 the
round is x:

In[4] :=

popUE=Round[PUE*100]

Out[4]=

{22, 16, 16, 15, 11, 4, 3, 3, 3, 2, 2, 1, 1, 1, 0}

In[5] :=

Apply[Plus,%]

Out[5]=

100

First, the meet game v1 ^ v2 in the EU Council is de…ned by

v1 = [62; 10; 10; 10; 10; 8; 5; 5; 5; 5; 4; 4; 3; 3; 3; 2] ;

v2 = [p; 22; 16; 16; 15; 11; 4; 3; 3; 3; 2; 2; 1; 1; 1; 0] ;

where p 2 f51; 75g : Next, we de…ne the generating function BanzhafTwoG for the
meet of two weighted voting games. To obtain the normalized Banzhaf index of
player i, we de…ne the function BanzhafTwoIndex and BanzhafTwoPower computes
the vector of these indices for all players.

In[6] :=

BanzhafTwoG[weights_List,pop_List]:=
Times @@ (1+x^weights y^pop)

The complexity bound C for the function BanzhafTwoG in the above two weighted
voting game is given by

In[7] :=

Length[BanzhafTwoG[votesUE,popUE]//Expand]

Generating functions for computing power indices efficiently 14

Out[7]=

1644

In[8] :=

BanzhafTwoIndex[i_,weights_List,pop_List,q_Integer,p_Integer]
:=Module[{delwe,delpo,g,sw,sp,coefi,s1,s2},
delwe=Delete[weights,i]; delpo=Delete[pop,i];
g=BanzhafTwoG[delwe,delpo];
sw=Apply[Plus,delwe]+1; sp=Apply[Plus,delpo]+1;
coefi=CoefficientList[g,{x,y}]/.{} -> Table[0,{sp}];
s1=Apply[Plus,Flatten[coefi[[
Range[Max[1,q-weights[[i]]+1],sw],
Range[Max[1,p-pop[[i]]+1],sp]]]]];
s2=If[((q+1)>sw) || ((p+1)>sp),0,Apply[Plus,
Flatten[coefi[[Range[q+1,sw],Range[p+1,sp]]]]]];
s1-s2]

In[9] :=

BanzhafTwoPower[weights_List,pop_List,q_,p_]:=
/(Plus @@ #)& @Table[BanzhafTwoIndex[i,weights,pop,q,p],
{i,Length[weights]}]

In[10]:=

Timing[BanzhafTwoPower[votesUE,popUE,62,51]]

Out[10]=

{14*Second, {1849/16565, 1849/16565, 1849/16565, 1849/16565,
1531/16565, 973/16565, 973/16565, 973/16565, 973/16565,
793/16565, 793/16565, 119/3313, 119/3313, 119/3313, 75/3313}}

In[11]:=

BanTwo51=N[%[[2]],3]

Out[11]=

{0.112, 0.112, 0.112, 0.112, 0.0924, 0.0587, 0.0587, 0.0587,
0.0587, 0.0479, 0.0479, 0.0359, 0.0359, 0.0359, 0.0226}

In[12]:=

Generating functions for computing power indices efficiently 15

Timing[BanzhafTwoPower[votesUE,popUE,62,75]]

Out[12]=

{13.79*Second, {1013/6672, 775/6672, 775/6672, 193/1668,
329/3336, 355/6672, 117/2224, 117/2224, 117/2224,
23/556, 23/556, 33/1112, 33/1112, 33/1112, 125/6672}}

In[13]:=

BanTwo75=N[%[[2]],3]

Out[13]=

{0.152, 0.116, 0.116, 0.116, 0.0986, 0.0532, 0.0526, 0.0526,
0.0526, 0.0414, 0.0414, 0.0297, 0.0297, 0.0297, 0.0187}

For computing the Shapley-Shubik index for 2-weighted voting games, the func-
tions are denoted by ShTwoG and ShTwoPower. These functions are de…ned as follows.
In[14]:=

ShTwoG[weights_List,pop_List]:=Times @@ (1+x^weights y^pop z)

The complexity bound C for the function ShTwoG in the European Union two
weighted voting game is

In[15]:=

Length[ShTwoG[votesUE,popUE]//Expand]

Out[15]=

2206

In[16]:=

ShTwoPower[weights_List,pop_List,q_Integer,p_Integer]:=
Module[{n=Length[weights],delwe,delpo,g,sw,sp,coefi,s1,s2,gg},
Table[delwe=Delete[weights,i]; delpo=Delete[pop,i];
g=ShTwoG[delwe,delpo];
sw=Apply[Plus,delwe]+1; sp=Apply[Plus,delpo]+1;
coefi=CoefficientList[g,{x,y}]/.{} -> Table[0,{sp}];
s1=Apply[Plus,Flatten[coefi[
[Range[Max[1,q-weights[[i]]+1],sw],
Range[Max[1,p-pop[[i]]+1],sp]]]]];
s2=If[((q+1)>sw) || ((p+1)>sp),0,
Apply[Plus,Flatten[coefi[
[Range[q+1,sw],Range[p+1,sp]]]]]];
gg=s1-s2;
Sum[Coefficient[gg,z,j] j! (n-j-1)!,{j,0,n-1}]/n!,{i,n}]]

Generating functions for computing power indices efficiently 16

In[17]:=

Timing[ShTwoPower[votesUE,popUE,62,51]]

Out[17]=

{28.5*Second, {7/60, 7/60, 7/60, 7/60, 860/9009,
19883/360360, 19883/360360, 19883/360360, 19883/360360,
743/16380, 743/16380, 1588/45045, 1588/45045,
1588/45045, 932/45045}}

In[18]:=

ShTwo51=N[%[[2]],3]

Out[18]=

{0.117, 0.117, 0.117, 0.117, 0.0955, 0.0552, 0.0552, 0.0552,
0.0552, 0.0454, 0.0454, 0.0353, 0.0353, 0.0353, 0.0207}

In[19]:=

Timing[ShTwoPower[votesUE,popUE,62,75]]

Out[19]=

{28*Second, {607/3003, 4835/36036, 4835/36036, 1202/9009,
5561/45045, 1427/32760, 13207/360360, 13207/360360,
13207/360360, 1597/60060, 1597/60060, 487/25740,
487/25740, 487/25740, 829/90090}}

In[20]:=

ShTwo75=N[%[[2]],3]

Out[20]=

{0.202, 0.134, 0.134, 0.133, 0.123, 0.0436, 0.0366, 0.0366,
0.0366, 0.0266, 0.0266, 0.0189, 0.0189, 0.0189, 0.0092}

In[21]:=

TableForm[Transpose[{PUE,BanTwo51,BanTwo75,ShTwo51,ShTwo75}],
TableHeadings->{countries,{’’PUE’’,’’2Ban 51’’,’’2Ban 75’’,
’’2Sh 51’’,’’2Sh 75’’}}]

Generating functions for computing power indices efficiently 17

Out[21]=

Country PUE 2Ban 51 2Ban 75 2Sh 51 2Sh 75
Germany .219 .112 .152 .117 .202
U. Kingdom .157 .112 .116 .117 .134
France .156 .112 .116 .117 .134
Italy .155 .112 .116 .117 .133
Spain .106 .0924 .0986 .0955 .123
Netherlands .0414 .0587 .0532 .0552 .0436
Greece .0281 .0587 .0526 .0552 .0366
Belgium .0273 .0587 .0526 .0552 .0366
Portugal .0268 .0587 .0526 .0552 .0366
Sweden .0236 .0479 .0414 .0454 .0266
Austria .0215 .0479 .0414 .0454 .0266
Denmark .0141 .0359 .0297 .0353 .0189
Finland .0137 .0359 .0297 .0353 .0189
Ireland .00966 .0359 .0297 .0353 .0189
Luxembourg .00109 .0226 .0187 .0207 .0092

Table 3

6. Concluding remarks. In the present paper we have considered weighted and
2-weighted voting games. We have shown that there exist polynomial time algorithms
based in generating functions to compute the classical power indices. We have also
obtained that the complexity bound for these algorithms is the number C of nonzero
coe¢cients of the generating function.

REFERENCES

[1] Banzhaf, J. F. III (1965). Weighted Voting Doesn’t Work: A Mathematical
Analysis. Rutgers Law Review 19, 317–343.

[2] Brams, S. F. and P. J. A¤uso (1976). Power and Size: A New Paradox. Theory
and Decision 7, 29–56.

[3] Carter, M. (1993). Cooperative games. In H. R. Varian, Ed., Economic and
Financial Modeling with Mathematica, Springer-Verlag, Berlin, 167–191.

[4] Coleman, J. S. (1973). Loss of power. American Sociological Review 38, 1–17.

[5] Felsenthal, D. S. and M. Machover (1998). The Measurement of Voting Power:
Theory and Practice, Problems and Paradoxes. Edward Elgar, Cheltenham.

Generating functions for computing power indices efficiently 18

[6] Gács, P. and L. Lovász (1999). Complexity of Algorithms. Lecture Notes, Yale
University, available at http://www.esi2.us.es/~mbilbao/pd¢les/complex.pdf

[7] Hart, S. and A. Mas-Colell (1988). The potential of the Shapley value. In A. E.
Roth, Ed., The Shapley Value, Cambridge University Press, Cambridge, 127–137.

[8] Lucas, W. F. (1975). Measuring Power in Weighted Voting Systems. In S. J.
Brams, W. F. Lucas, P. D. Stra¢n, Eds., Political and Related Models, Springer-
Verlag, New York, 183–238.

[9] Mann, I. and L. S. Shapley (1962). Value of Large Games, VI: Evaluating the
Electoral College Exactly. RM-3158-PR, The Rand Corporation, Santa Monica,
California.

[10] Shapley, L. S. (1953). A value for n-person games. Annals of Mathematical Stud-
ies 28, 307–317.

[11] Shapley, L. S., and M. Shubik (1954). A Method for Evaluating the Distribution
of Power in a Committee System. American Political Science Review 48, 787–
792.

[12] Stanley, R. P. (1986). Enumerative Combinatorics, Vol I, Wadsworth, Monterey,
California.

[13] Tannenbaum, P. (1997). Power in Weighted Voting Systems. The Mathematica
Journal 7, 58–63.

