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Abstract

A cooperative game consists of a set of players and a characteristic function which determines the maximal gain or minimal cost 
that every subset of players can achieve when they decide to cooperate, regardless of the actions that the other players take. It is 
often assumed that the players are free to participate in any coalition, but in some situations there are dependency relationships 
among the players that restrict their capacity to cooperate within some coalitions. Those relationships must be taken into account 
if we want to distribute the profits fairly. In this respect, several models have been proposed in literature. In all of them dependency 
relationships are considered to be complete, in the sense that either a player is allowed to fully cooperate within a coalition or 
they cannot cooperate at all. Nevertheless, in some situations it is possible to consider another option: that a player has a degree of 
freedom to cooperate within a coalition. A model for those situations is presented.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In a general way, game theory studies cooperation and conflict models, using mathematical methods. This paper 
is about cooperative game theory. A cooperative game over a finite set of players is defined as a function establishing 
the worth of each coalition. Given a cooperative game, the main problem that arises is how to assign a payoff to 
each player in a reasonable way. In this setting, it is often assumed that all of the players are socially identical. In 
real life, however, political or economic circumstances may impose certain restraints on coalition formation. This 
idea has led several authors to develop models of games in which relationships among players must be taken into 
account. Depending on the nature of such relationships, different structures in the set of players have been considered. 
Myerson [12] studied games in which communication between players is restricted. He considered graphs to model 
those restraints. Subsequently, different kinds of limitations on cooperation among players have been studied, and 
various structures have been used for that, like convex geometries (see [3]), matroids (see [4]), antimatroids (see [1]) 
or augmenting systems (see [5]). A particularly interesting case of limited cooperation arises when we consider veto 
relationships between players. In this regard, Gilles et al. [11] modeled situations in which a hierarchical structure 
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imposes some constraints on the behavior of the players in the game. They introduce games with permission structure, 
that consist of a set of players, a cooperative game and a mapping that assigns to every player a subset of direct 
subordinates. In this respect, the power of a player over a subordinate can be of different kinds. In the conjunctive 
approach it is assumed that each player needs the permission of all his superiors, whereas in the disjunctive approach of 
van den Brink [7], the permission of any of those superiors will suffice. In each case they consider a new characteristic 
function, which collects the information given by both the original characteristic function and the permission structure, 
and which allows them to define a value for games on conjunctive (or respectively disjunctive) permission structures. 
They provide intuitive characterizations for each case, showing in this way that the values obtained are reasonable. 
Subsequently, Derks and Peters [10] generalized those approaches by considering the so-called restrictions. Although 
their model is more general, the axiomatization given is not as intuitive and straightforward as those given by Gilles
et al. [11] and van den Brink [7] for permission structures.

In all of the models presented so far the dependency relationships are complete, in the sense that either a coalition 
can veto a player or it does not have any authority over the player. Our aim in this paper will be to provide a new model 
for games in which players are subject to certain restraints when cooperating within a coalition. We will consider the 
possibility that such restraints are partial, which will make this model more general than those referenced above.

The paper is organized as follows. In Section 2 we recall some basic definitions and properties about the Shapley 
value, fuzzy sets and the Choquet integral. In Section 3, we introduce fuzzy authorization structures, that will be used 
to model situations in which some players depend partially on other players. Then, for each game with fuzzy autho-
rization structure, a new characteristic function, that collects the information from both the game and the structure, 
is be defined. This characteristic function will allow us to define a Shapley value for games with fuzzy authorization 
structure. A characterization of this value is given in Section 4. An example is described as well. Finally, in Section 5
some conclusions are given.

2. Preliminaries

2.1. Cooperative TU-games

We recall some concepts regarding cooperative games. A transferable utility cooperative game or TU-game is a 
pair (N, v) where N is a finite set and v : 2N → R is a function with v(∅) = 0. The elements of N = {1, ..., n} are 
called players, and the subsets of N coalitions. Given a coalition E, v(E) is the worth of E, and it is interpreted as the 
maximal gain or minimal cost that the players in this coalition can achieve by themselves against the best offensive 
threat by the complementary coalition. Frequently, a TU-game (N, v) is identified with the function v. A game v is 
monotone if for every F ⊆ E ⊆ N , it holds that v(F ) ≤ v(E). The family of games with set of players N is denoted by 
GN . This set is a (2n −1)-dimensional real vector space. One basis of this space is the collection {uF : F ⊆ N, F �= ∅}
where for a nonempty coalition F the unanimity game uF is defined by

uF (E) =
{

1 ifF ⊆ E,

0 otherwise.

Every game v ∈ GN can be written as a linear combination of them,

v =
∑

{E∈2N :E �=∅}
	v(E)uE

where 	v(E) is the dividend of the coalition E in the game v.
A solution or value on GN is a function ψ : GN → RN that assigns to each game a vector (ψ1(v), . . . , ψn(v))

where the real number ψi(v) is the payoff of the player i in the game (N, v).
Many values have been defined in literature for different families of games. The Shapley value (see [13]) φ(v) ∈ RN

of a game v ∈ GN is a weighted average of the marginal contributions of each player to the coalitions and formally it 
is defined by

φi(v) =
∑

{E⊆N :i∈E}
pE

(
v(E) − v

(
E \ {i})), for all i ∈ N,

where
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pE = (n − |E|)!(|E| − 1)!
n!

and |E| denotes the cardinality of E.
Some desirable properties for a value ψ : GN → RN are the following:

Efficiency:
∑

i∈N ψi(v) = v(N) for all v ∈ GN .
Additivity: ψ(v1 + v2) = ψ(v1) + ψ(v2) for all v1, v2 ∈ GN .
Null player property: A player i ∈ N is a null player in v ∈ GN if v(E) = v(E \ {i}) for all E ⊆ N . If i ∈ N is null 

player in v ∈ GN then ψi(v) = 0.
Necessary player property: A player i is a necessary player in v ∈ GN if v(E) = 0 for all E ⊆ N \ {i}. If i is a 

necessary player in a monotone game v ∈ GN , then ψi(v) ≥ ψj(v) for all j ∈ N .

These four properties characterize the Shapley value (see [6]).

2.2. Fuzzy sets

Fuzzy subsets of a finite set were described by Zadeh [16]. A fuzzy subset of N is a mapping e : N → [0, 1]
where e assigns to i ∈ N a degree of membership. A fuzzy subset of N is identified with a vector in [0, 1]N . Given 
e ∈ [0, 1]N the support of e is the set supp(e) = {i ∈ N : ei > 0} and the image of e is the set im(e) = {ei : i ∈ N}. If 
t ∈ [0, 1] the t -level set of e is [e]t = {i ∈ N : ei � t}. Given e, f ∈ [0, 1]N standard union and intersection are defined, 
respectively, by (e ∩ f )i = min{ei, fi}, (e ∪ f )i = max{ei, fi} for all i = 1, . . . , n. The fuzzy sets e, f ∈ [0, 1]N are 
called comonotone if (ei − ej )(fi − fj ) ≥ 0 for all i, j ∈ N .

Regarding cooperative game theory, Aubin [2] defined a fuzzy coalition in N as a fuzzy subset e of N where, for 
all i ∈ N , the number ei ∈ [0, 1] is regarded as the degree of participation of player i in e. Every coalition E ⊆ N can 
be identified with the fuzzy coalition 1E ∈ [0, 1]N defined by 1E

i = 1 if i ∈ E and 1E
i = 0 otherwise.

Different Shapley values for games with fuzzy coalitions were studied by Butnariu [8] and Tsurumi et al. [15].

2.3. The Choquet integral

The Choquet integral was introduced in [9]. It was originally defined for capacities. Later on, Schmeidler [14]
studied this integral for all set functions. Given v : 2N → R and e ∈ [0, 1]N , the Choquet integral of e with respect to 
v is defined as

∫
edv =

q∑
p=1

(sp − sp−1)v
([e]sp)

, (1)

where im(e) ∪ {0} = {sp}qp=0 and 0 = s0 < s1 < . . . < sq .
It will be useful, when dealing with several fuzzy coalitions, to rewrite the expression above using a superset of 

im(e), that is,

∫
edv =

m∑
l=1

(tl − tl−1)v
([e]tl ), (2)

where im(e) ⊆ {tl}ml=0 and 0 = t0 < t1 < . . . < tm.
The following properties of the Choquet integral are known:

(C1)
∫

1E dv = v(E), for all E ⊆ N .
(C2)

∫
te dv = t

∫
e dv, for all t ∈ [0, 1].

(C3)
∫

e dv ≤ ∫
f dv, whenever e ≤ f and v is monotone.

(C4)
∫

e d(cv) = c
∫

e dv, for c ∈R.
(C5)

∫
e d(v1 + v2) =

∫
e dv1 + ∫

e dv2.
(C6)

∫
(e + f ) dv = ∫

e dv + ∫
f dv, when e + f ≤ 1N and e, f are comonotone.
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3. Methodology

We aim to present a model of games in which the ability of players to cooperate within a coalition can be limited. 
To do this, firstly we introduce the structure that will allow us to deal will that kind of dependency relationships. Then 
we will incorporate the information from the structure with the information from the game. Finally, a value will be 
proposed.

3.1. Fuzzy authorization structures

The idea is that a set of players may have the power to restrict the ability to cooperate of the rest of the players. So, 
given a coalition, we will consider the capacity of their players to cooperate within the coalition.

Definition 1. A fuzzy authorization operator on N is a function a : 2N → [0, 1]N that satisfies the following require-
ments:

(A1) a(E) � 1E for any E ⊆ N ,
(A2) If E ⊆ F then a(E) � a(F ).

The pair (N, a) will be called a fuzzy authorization structure. The set of fuzzy authorization operators on N will be 
denoted by FAN .

Given a ∈ FAN , we will denote

im(a) =
⋃

E⊆N

im
(
a(E)

)
.

Suppose that a is a fuzzy authorization operator and v is a game on N . Then, given E ⊆ N and i ∈ N , we will in-
terpret ai(E) as the proportion of the whole operating capacity of player i that he is allowed to use within coalition E. 
Or, equivalently, 1 − ai(E) is the fraction of the operating capacity of player i that is under control of coalition N \E.

3.2. The restricted game

The restricted game will be the tool used to amalgamate the information from the game and the information from 
the fuzzy authorization structure.

Definition 2. Let v ∈ GN and a ∈FAN . The restriction of v on a is the game va ∈ GN defined as

va(E) =
∫

a(E)dv for all E ⊆ N.

Remark 3. Using (2), the restriction of v on a can be written as

va(E) =
m∑

l=1

(tl − tl−1)v
([

a(E)
]
tl

)
for all E ⊆ N, (3)

where im(a) ⊆ {tl}ml=0 and 0 = t0 < t1 < . . . < tm.

3.3. A Shapley value for games with fuzzy authorization structure

We apply the Shapley value to the restricted game in order to define a value for games with fuzzy authorization 
structure.

Definition 4. The Shapley fuzzy authorization value on the set of players N is the allocation rule ϕN : GN × FAN

→RN given by

ϕN(v, a) = φ
(
va

)
for all v ∈ GN and a ∈ FAN.
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We will write ϕ (rather than ϕN ) and say just Shapley fuzzy authorization value as long as there is no possibility of 
confusion.

4. Results

4.1. A characterization of the Shapley fuzzy authorization value

We aim to prove that the Shapley fuzzy authorization value has good properties with respect to both the game and 
the fuzzy authorization structure. To do this, we will consider the properties described below.

If a ∈ FAN with im(a(N)) ⊆ {0, 1}, which means that when the grand coalition is formed each player can use 
either his full capacity or no capacity at all, the set supp(a(N)) can be seen as a carrier (see [13]). In that case, we can 
consider the following efficiency property:

Efficiency. For every v ∈ GN and a ∈FAN with im(a(N)) ⊆ {0, 1} it holds that
∑
i∈N

ψi(v, a) = v
(
supp

(
a(N)

))
.

Additivity is a well-known property of the Shapley value. In our setting, it is as follows:

Additivity. For every v, w ∈ GN and a ∈FAN it holds that

ψ(v + w,a) = ψ(v, a) + ψ(w,a).

Given a ∈ FAN and i, j ∈ N , player j depends partially on i according to a if there exists E ⊆ N such that 
aj (E) > aj (E \ {i}). Given v ∈ GN and a ∈ FAN , a player i ∈ N is an irrelevant player in (v, a) if for every j ∈ N

such that j depends partially on i according to a it holds that j is a null player in v. Notice that a null player in v is 
not necessarily an irrelevant player in (v, a).The null player property is generalized now in the following way:

Irrelevant player. For every v ∈ GN , a ∈FAN and i ∈ N such that i is an irrelevant player in (v, a) it holds that

ψi(v, a) = 0.

Note that if a is the trivial authorization structure (that is, a(E) = 1E for every E ⊆ N ) then the irrelevant players in 
(v, a) are just the null players in v. From this point of view, the irrelevant player property is a generalization of the 
null player property.

Given a ∈ FAN and i, j ∈ N , we say that i has veto power over j according to a if aj (N \ {i}) = 0. Players who 
have veto power over a necessary player will expect to be treated as another necessary player. This leads us to consider 
the following property:

Veto power over a necessary player. For every monotone game v ∈ GN , a ∈ FAN and i, j ∈ N such that j is a 
necessary player in v and i has veto power over j according to a it holds that, for all k ∈ N ,

ψi(v, a) � ψk(v, a).

Note that if a is the trivial authorization structure then the players with veto power over a necessary player according to 
a are just the necessary players for the game. So the property of veto power over a necessary player is a generalization 
of the necessary player property.

Let a ∈ FAN , ∅ �= T ⊆ N and i ∈ T . The fuzzy authorization operator a describes a situation in which some 
players may need the permission from other players in order to use a fraction of their operating capacity. In such 
situation, if coalition T is formed, player i will be allowed to use a proportion of his capacity equal to ai(T ). Now 
suppose that somehow the players in T acquire the power to authorize player i to use a bigger proportion of his 
capacity, say s ∈ (ai(T ), 1]. The new situation would be described by the fuzzy authorization operator aT,i,s defined 
as

aT,i,s(E) =
{

a(E) ∨ (s · 1{i}) if T ⊆ E,

a(E) otherwise.
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In this case, it would be reasonable to expect that all the players in T will benefit equally from the change. This is 
what the following property states:

Fairness. For every v ∈ GN , a ∈FAN , T ∈ 2N \ {∅}, i ∈ T and s ∈ [0, 1] it holds that

ψj

(
v, aT ,i,s

) − ψj (v, a) = ψi

(
v, aT ,i,s

) − ψi(v, a) for all j ∈ T .

Notice that if s � ai(T ) then aT,i,s = a. Therefore, the expression above is non-trivial only if s ∈ (ai(T ), 1].
Two fuzzy authorization operators a and a′ are called comonotone if a(E) and a′(E) are comonotone for every 

E ⊆ N .
If we suppose that each player has an amount of a certain resource and that the profit that can be made from those 

resources is proportional to the quantities, we could consider a property like the following, that establishes, in a way, 
linearity between the authorization operator and the payoff:

Comonotonicity. For every v ∈ GN , a, a′ ∈FAN comonotone and t ∈ [0, 1] it holds that

ψ
(
v, ta + (1 − t)a′) = tψ(v, a) + (1 − t)ψ

(
v, a′).

Theorem 5. An allocation rule ψ : GN ×FAN→RN is equal to the Shapley fuzzy authorization value if and only if 
it satisfies the properties of efficiency, additivity, irrelevant player, veto power over a necessary player, fairness and 
comonotonicity.

Proof. Firstly it will be proved that ϕ satisfies the properties in the theorem.

EFFICIENCY. Let v ∈ GN and a ∈FAN with im(a(N)) ⊆ {0, 1}. It holds that

∑
i∈N

ϕi(v, a) =
∑
i∈N

φi

(
va

) = va(N) =
∫

a(N)dv =
∫

1supp(a(N))dv = v
(
supp

(
a(N)

))
,

where we have used the efficiency of the Shapley value and property (C1).

ADDITIVITY. Let v, w ∈ GN and a ∈FAN . From (C5) it follows that for every coalition E it holds that

(v + w)a(E) =
∫

a(E)d(v + w) =
∫

a(E)dv +
∫

a(E)dw = va(E) + wa(E).

Therefore, (v + w)a = va + wa . From this fact and the additivity of the Shapley value we get

ϕ(v + w,a) = φ
(
(v + w)a

) = φ
(
va + wa

)
= φ

(
va

) + φ
(
wa

) = ϕ(v, a) + ϕ(w,a).

IRRELEVANT PLAYER. Let v ∈ GN , a ∈ FAN and i ∈ N an irrelevant player in (v, a). We must show that 
ϕi(v, a) = 0. Taking into consideration that ϕi(v, a) = φi(v

a) and that the Shapley value satisfies the null player prop-
erty, it will suffice to prove that i is a null player in va . Let E ⊆ N . Take {tl}ml=0 ⊇ im(a) with 0 < t0 < t1 < . . . < tm. 
From (3) we obtain that

va(E) − va
(
E \ {i}) =

m∑
l=1

(tl − tl−1)
(
v
([

a(E)
]
tl

) − v
([

a
(
E \ {i})]

tl

))
. (4)

For any l = 1, . . . , m, it is clear from (A2) that [a(E \ {i})]tl ⊆ [a(E)]tl . Besides, since i is an irrelevant player in 
(v, a), it follows that the players in [a(E)]tl \ [a(E \ {i})]tl are null players in v. Hence, it holds that

v
([

a(E)
]
tl

) = v
([

a
(
E \ {i})]

tl

)
for all l = 1, . . . ,m. (5)

From (4) and (5) we obtain va(E) = va(E \ {i}). Therefore, i is a null player in va .

VETO POWER OVER A NECESSARY PLAYER. Let v ∈ GN , a ∈ FAN and i, j ∈ N be such that v is monotone, j is 
a necessary player in v and i has veto power over j according to a. We want to prove that ϕi(v, a) � ϕk(v, a)
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for all k ∈ N . Firstly, from the monotonicity of v and (A2) it is easy to derive that va is monotone. Then, since 
ϕ(v, a) = φ(va), va is monotone and the Shapley value satisfies the necessary player property, it will be enough to 
show that i is a necessary player in va . Given E ⊆ N \ {i} we get

va(E) =
∫

a(E)dv =
m∑

l=1

(tl − tl−1)v
([

a(E)
]
tl

)
,

where im(a(E)) ∪ {0} = {tl}ml=0 and 0 = t0 < t1 < . . . < tm. Using (A2) and the fact that i has veto power over 
j according to a we can write aj (E) ≤ aj (N \ {i}) = 0. Therefore, j /∈ [a(E)]tl for all l = 1, ..., m. Since j is a 
necessary player in v it holds that v([a(E)]tl ) = 0 for all l = 1, ..., m. Consequently, va(E) = 0.

FAIRNESS. Let v ∈ GN , a ∈FAN , T ∈ 2N \ {∅}, i ∈ T and s ∈ [0, 1]. Take j ∈ T . We must prove that

ϕj

(
v, aT ,i,s

) − ϕj (v, a) = ϕi

(
v, aT ,i,s

) − ϕi(v, a). (6)

Using the definition of the Shapley value, we can write

ϕj

(
v, aT ,i,s

) = φj

(
vaT,i,s ) =

∑
{E⊆N :j∈E}

pE

[
vaT,i,s

(E) − vaT,i,s (
E \ {j})]

=
∑

{E⊆N :j∈E}
pE

[∫
aT,i,s(E)dv −

∫
aT,i,s

(
E \ {j})dv

]
. (7)

Similarly,

ϕj (v, a) = φj

(
va

) =
∑

{E⊆N :j∈E}
pE

[
va(E) − va

(
E \ {j})]

=
∑

{E⊆N :j∈E}
pE

[∫
a(E)dv −

∫
a
(
E \ {j})dv

]
. (8)

Taking into account that aT,i,s(F ) = a(F ) if T � F , we obtain, subtracting (8) from (7), that

ϕj

(
v, aT ,i,s

) − ϕj (v, a) =
∑

{E⊆N :T ⊆E}
pE

[∫
aT,i,s(E)dv −

∫
a(E)dv

]
.

Finally, (6) follows from the fact that the last expression does not depend on the player j ∈ T chosen.

COMONOTONICITY. Let v ∈ GN , a, a′ ∈FAN comonotone and t ∈ [0, 1]. It is clear that ta, (1 − t)a′ ∈ FAN and are 
also comonotone. Given a coalition E, we obtain, using (C6) and (C2), that

vta+(1−t)a′
(E) =

∫
ta(E) + (1 − t)a′(E)dv

= t

∫
a(E)dv + (1 − t)

∫
a′(E)dv = tva(E) + (1 − t)va′

(E).

Hence, vta+(1−t)a′ = tva + (1 − t)va′
. From this equality and the linearity of the Shapley value we get

ϕ
(
v, ta + (1 − t)a′) = φ

(
vta+(1−t)a′) = φ

(
tva + (1 − t)va′)

= tφ
(
va

) + (1 − t)φ
(
va′)

= tϕ(v, a) + (1 − t)ϕ
(
v, a′).

We have proved that the Shapley fuzzy authorization value satisfies all of the properties mentioned in the theorem. 
Now we will show that such properties uniquely determine the Shapley fuzzy authorization value.

Let ψ : GN × FAN → RN be such that it satisfies the properties of efficiency, additivity, irrelevant player, veto 
power over a necessary player, fairness and comonotonicity. We must prove that ψ = ϕ.
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Firstly we will show that

ψ(cuE,a) = ϕ(cuE,a) for all E ∈ 2N \ {∅}, c > 0 and a ∈FAN with im(a) ⊆ {0,1}. (9)

Given a ∈ FAN we define

m(a) =
∑
F⊆N

∣∣supp
(
a(F )

)∣∣.
We will prove (9) by induction on m(a).

BASE CASE. Let a ∈FAN be such that m(a) = 0. It holds that a(F ) = 0 for all F ⊆ N . It is clear that all of the players 
are irrelevant players in (cuE, a). Since ψ satisfies the irrelevant player property, it follows that ψ(cuE, a) = 0. We 
conclude that ψ(cuE, a) = ϕ(cuE, a).

INDUCTIVE STEP. Let a ∈FAN be such that im(a) ⊆ {0, 1} and m(a) > 0. We consider the three following sets:

H1 = {
i ∈ N : i is an irrelevant player in (cuE, a)

}
,

H2 = {i ∈ N : ∃j ∈ E such that i has veto power over j according to a},
H3 = N \ (H1 ∪ H2).

Note that E ⊆ H2, since any player has veto power over himself.
Since ϕ and ψ satisfy the irrelevant player property it holds that

ϕk(cuE, a) = 0 for all k ∈ H1, (10)

ψk(cuE,a) = 0 for all k ∈ H1. (11)

From the property of veto power over a necessary player we can derive that there exist b, b′ ∈R such that

ϕk(cuE, a) = b for all k ∈ H2, (12)

ψk(cuE,a) = b′ for all k ∈ H2. (13)

Now suppose that i ∈ H3. Since i /∈ H1 there must exist j ∈ E such that j depends partially on i according to a. 
This means that there exists F ⊆ N such that aj (F ) > aj (F \ {i}). Since im(a) ⊆ {0, 1} it holds that aj (F \ {i}) = 0. 
Notice that F �= N , since otherwise i would have veto power over j and this would contradict i /∈ H2. Take T minimal 
such that T ⊆ F and j ∈ supp(a(T )). It is clear that i ∈ T . We define the fuzzy authorization structure ã given by

ã(S) =
{

a(T ) − 1{j} if S = T ,

a(S) otherwise.

It is straightforward to check that ã ∈ FAN and ãT ,j,1 = a. Since ϕ and ψ satisfy the property of fairness, we obtain 
that

ϕi(cuE, a) − ϕi(cuE, ã) = ϕj (cuE, a) − ϕj (cuE, ã),

ψi(cuE, a) − ψi(cuE, ã) = ψj(cuE,a) − ψj (cuE, ã).

Taking into account that E ⊆ H2 we get from (12) and (13) that ϕj (cuE, a) = b and ψj(cuE, a) = b′. If we substitute 
these values into the equalities above we have

ϕi(cuE, a) = b + ϕi(c, uE, ã) − ϕj (cuE, ã), (14)

ψi(cuE,a) = b′ + ψi(cuE, ã) − ψj(cuE, ã). (15)

As m(ã) = m(a) − 1, it follows by induction hypothesis that ϕ(cuE, ã) = ψ(cuE, ã). From this equality, (14) and 
(15) it follows that

ϕi(cuE, a) − ψi(cuE,a) = b − b′.
So we have proved that

ϕk(cuE, a) − ψk(cuE,a) = b − b′ for all k ∈ H3. (16)



J.M. Gallardo et al. / Fuzzy Sets and Systems 272 (2015) 115–125 123
Now, on the one hand, from (10), (11), (12), (13) and (16) we get that∑
k∈N

ϕk(cuE, a) −
∑
k∈N

ψk(cuE,a) = (
b − b′)|H2 ∪ H3|,

and, on the other hand, as ϕ and ψ are efficient and im(a(N)) ⊆ {0, 1}, we know that∑
k∈N

ϕk(cuE, a) =
∑
k∈N

ψk(cuE,a).

Therefore, it follows that (b − b′)|H2 ∪ H3| = 0. Since ∅ �= E ⊆ H2 it holds that b = b′, which leads to ψ(cuE, a) =
ϕ(cuE, a).

We have proved (9). Now we will show that

ψ(cuE,a) = ϕ(cuE,a) for all E ∈ 2N \ {∅}, c > 0 and a ∈FAN. (17)

For every fuzzy authorization operator a ∈FAN we consider

z(a) = ∣∣im(a) \ {0,1}∣∣.
We will prove (17) by strong induction on z(a).

BASE CASE. It has already been proved.

INDUCTIVE STEP. Let a ∈ FAN be such that z(a) > 0. Take t ∈ im(a) \ {0, 1}. Consider the fuzzy authorization 
operators a[0,t] and a[t,1] defined by

a
[0,t]
i (F ) = min

(
1,

ai(F )

t

)
,

a
[t,1]
i (F ) = max

(
0,

ai(F ) − t

1 − t

)
,

for every F ⊆ N and i ∈ N . Moreover it holds that

ta[0,t] + (1 − t)a[t,1] = a.

Let us see that a[0,t] and a[t,1] are comonotone. We have to prove that for every F ⊆ N and i, j ∈ N it holds that[
a

[0,t]
i (F ) − a

[0,t]
j (F )

][
a

[t,1]
i (F ) − a

[t,1]
j (F )

] ≥ 0.

It suffices to consider these cases:

1) If ai(F ), aj (F ) ≥ t then a[0,t]
i (F ) = a

[0,t]
j (F ) = 1.

2) If ai(F ), aj (F ) ≤ t then a[t,1]
i (F ) = a

[t,1]
j (F ) = 0.

3) If ai(F ) ≥ t > aj (F ) then a[0,t]
i (F ) = 1 > a

[0,t]
j (F ) and also a[t,1]

i (F ) ≥ 0 = a
[t,1]
j (F ).

Now, since ϕ and ψ satisfy comonotonicity it holds that

ψ(cuE,a) = tψ
(
cuE,a[0,t]) + (1 − t)ψ

(
cuE,a[t,1]),

ϕ(cuE, a) = tϕ
(
cuE,a[0,t]) + (1 − t)ϕ

(
cuE,a[t,1]).

Since z(a[0,t]), z(a[t,1]) < z(a) it follows by induction hypothesis that ψ(cuE, a[0,t]) = ϕ(cuE, a[0,t]) and
ψ(cuE, a[t,1]) = ϕ(cuE, a[t,1]). Hence

ψ(cuE,a) = tϕ
(
cuE,a[0,t]) + (1 − t)ϕ

(
cuE,a[t,1]) = ϕ(cuE,a).

So we have proved (17). Now, take E ∈ 2N \ {∅}, a ∈ FAN and c < 0. Using additivity and the irrelevant player 
property we have that

ψ(cuE,a) + ψ(−cuE,a) = 0,

ϕ(cuE, a) + ϕ(−cuE,a) = 0,
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and, hence,

ψ(cuE,a) = −ψ(−cuE,a) = −ϕ(−cuE,a) = ϕ(cuE,a).

We have seen that ψ(cuE, a) = ϕ(cuE, a) for all c ∈ R, E ∈ 2N \ {∅} and a ∈ FAN . Finally, take v ∈ GN and 
a ∈FAN . It holds that

ψ(v, a) = ψ

( ∑
{E⊆N :E �=∅}

�v(E)uE,a

)
=

∑
{E⊆N :E �=∅}

ψ
(
�v(E)uE,a

)

=
∑

{E⊆N :E �=∅}
ϕ
(
�v(E)uE,a

) = ϕ

( ∑
{E⊆N :E �=∅}

�v(E)uE,a

)
= ϕ(v, a). �

4.2. Example

Imagine the following situation. A consumer electronics company wants to make a new product. To do this, the 
company needs several components from various suppliers. We will focus on three of those suppliers. For i = 1, 2, 3
supplier i produces component i. The company has signed an agreement with the three suppliers that establishes the 
following:

• The company will pay i dollars to supplier i for every unit of component i delivered before the deadline.
• The company will pay a total of 2(i+j) dollars to suppliers i and j for every pair made up of a unit of component i

and a unit of component j delivered before the deadline.
• The company will pay a total of 20 dollars to the three suppliers for every set made up of a unit of each component 

delivered before the deadline.

Each supplier has calculated that it would be able to produce one million units of the corresponding component before 
the deadline. This situation can be modeled with a cooperative game ({1, 2, 3}, v), where, for every E ⊆ {1, 2, 3}, 
v(E) is the revenue (in millions) obtained by coalition E.

v
({1}) = 1, v

({2}) = 2, v
({3}) = 3,

v
({1,2}) = 6, v

({1,3}) = 8, v
({2,3}) = 10, v

({1,2,3}) = 20.

Imagine now the following. In order to produce component 3, supplier 3 makes use of a technology developed 
and patented by supplier 1. Supplier 3 has calculated that if they decided to produce component 3 without using 
that technology, they would only be able to produce seven hundred thousand units before the deadline. They also 
use a technology patented by supplier 2, and the speed of production would drop 50 percent if they did without that 
technology. Finally, it they decided to do without both technologies, they could only produce four hundred thousand 
units of component 3 before the deadline.

For every E ⊆ {1, 2, 3} and i ∈ {1, 2, 3}, ai(E) indicates the fraction of its maximal productive capacity that player 
i can reach if it does not have the authorization of the players in {1, 2, 3} \E:

E {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
a(E) (1,0,0) (0,1,0) (0,0,0.4) (1,1,0) (1,0,0.5) (0,1,0.7) (1,1,1)

We calculate the restricted game:

va
({1}) = v

({1}) = 1, va
({2}) = v

({2}) = 2, va
({3}) = 0.4v

({3}) = 1.2,

va
({1,2}) = v

({1,2}) = 6, va
({1,3}) = 0.5v

({1,3}) + 0.5v
({1}) = 4.5,

va
({2,3}) = 0.7v

({2,3}) + 0.3v
({2}) = 7.6, va

({1,2,3}) = v
({1,2,3}) = 20.

Finally, a payoff vector for the suppliers is

ϕ(v, a) = (5.6833,7.7333,6.5833).
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5. Conclusions

We have defined and characterized a value for games with fuzzy authorization structure. The model presented is 
more general than those introduced in previous papers (Gilles et al. [11], Derks and Peters [10], van den Brink [7], 
Algaba et al. [1]), since it allows us to deal with partial dependency relationships. The value introduced is applicable 
to situations in which we have a cooperative game and a collection of restrictions on coalition formation.

Other solutions for games with fuzzy authorization structure remain to be studied.
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