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Abstract

A game on a convex geometry is a real-valued function defined on the family ¥ of the closed sets of a closure
operator which satisfies the finite Minkowski—Krein-Milman property. If £ is the Boolean algebra 2"V then we obtain a
n-person cooperative game. We will introduce convex and quasi-convex games on convex geometries and we will study
some properties of the core and the Weber set of these games. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A cooperative game is a function v that assigns
to each coalition S C N of a finite set N of players a
real number v(S) with v() = 0. Assuming that the
coalition N of all players will form, a solution
concept will prescribe a distribution of the worth
v(N) among the players. Doubtless, the most at-
tractive solution concept is the core of the game.
The core of a game v: 2V — R, is the set of
the vectors xe€ R" with ) . . x;=v(N) and
Y iesxi = v(S), for all the coalitions S € 2V. Notice
that no coalition S C N should be able to improve
upon Xx.

In this paper, we develop a model of coopera-
tive games in which only certain coalitions are al-
lowed to form. We will study the structure of such
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allowable coalitions using the theory of convex
geometries, a notion developed to combinatorially
abstract geometric convexity. In this context, the
core is defined for the previous relations, but only
for feasible coalitions. There have been previous
models developed for Myerson [11], Faigle [5] and
Faigle and Kern [6,7].

We begin by defining a convex geometry and
describing some of their fundamental properties.
Section 3 will define what we mean by the core for
a game on a convex geometry. In Section 4 we
introduce the Weber set as the convex hull of the
marginal worth vectors. In the classical situation, a
game is convex if and only if the Weber set co-
incides with the core of the game. For a game v
on a convex geometry % C 2V, the inclusion
Core(Z,v) C Weber(Z,v) is not true. However,
in the last section we show that for games on
convex geometries the Weber set is contained in
the core if and only if the game is quasi-convex. If
the game is monotone then the result also holds for
convex games.
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2. Games on convex geometries

In this section, we define the concept of convex
geometry [4] and describe its fundamental prop-
erties. Let N ={1,2,...,n} be a finite set and
consider a family % of subsets of N with the
properties

(HleZand N € &2,

(2) A € & and B € & implies that ANB € Z.
The family % gives rise to the operator — : 2V —
2V defined by

A—d:=({Ceg:4CC}.

The operator — has the following properties:
ACA, A=A and 4 C B implies 4 C B, for all
A, B C N with the additional condition that () = (.
That is, the operator — is a closure operator and
(N,—) is a closure space [1]. Conversely, every
operator with the above conditions defines a
family ¥ C 2V with properties (1) and (2) as the
family of its closed sets & := {4 CN: 4 =A4}.

If (N,—) is a closure space then ¥ C 2V, or-
dered by inclusion, is a complete lattice in which
meet and join operations are defined by

ANB=ANB, AVB=AUB,
forall 4,B € &Z.

Throughout the remainder of this paper the
closure space (N,—) with the family ¥ of its
closed sets is identified.

Definition 1. The family of the closed sets % is a
convex geometry if it satisfies the anti-exchange

property:

Forevery ACN, ifi,j¢A and j€AUI

then i¢ZAUj.

A set in a convex geometry % is called convex.
For A C N an element a € A4 is an extreme point of
A if a¢A\a For a closed set 4 € ¥ this is
equivalent to 4\ a € #. Let ex(4) be the set of
all extreme points of 4. The convex geometries
are the abstract closure spaces satisfying the
finite Minkowski—-Krein—Milman property: Every
closed set is the closure of its extreme points
[4]. The following result shows that convex

geometries have some properties of Euclidean
convexity.

Theorem 1. Let — : 2V — 2V be a closure operator
on N and let & be the family of its closed sets. Then
the following statements are equivalent:

(a) & is a convex geometry.

(b) If A # N is a closed set then A U {i} is closed

for some i € N \ A.

(c) For every closed set AC N, A = M.

Proof. See Edelman and Jamison ([4], Theorem
2.1). O

A cooperative game is a function v: 2¥ — R
with v() = 0. The players are the elements of N
and the coalitions are the elements of the Boolean
algebra 2V,

Definition 2. A game on a convex geometry % is a
function v: ¥ — R such that v(()) = 0.

The coalitions are the convex sets of ¥ and the
players are the elements i € N. Let I'(¥) be the
vector space over R of all games on the convex
geometry ¥ C 2V, A game on a convex geometry
is called monotone or convex when v: ¥ — R
satisfies the corresponding property for the partial
order and the join and meet operations.

Example 1. A communication situation is a triple
(N,G,v), where (N,v) is a game and G = (N, E) is
a graph. This concept was first introduced in
Myerson [11], and investigated in Borm et al. [3]. If
G = (N,E) is a connected block-graph ([9], p. 30),
then the family of all coalitions of N that induce
connected subgraphs

¥ ={S CN:(S,E(S)) is connected },

is a convex geometry ([4], Theorem 3.7).

Example 2. A subset S of a partially ordered set
(poset) (P, <) is convex whenever a €S, b€ S
and a <b imply [a,b] C S. The convex subsets of
any poset P form a closure system Co(P). If P (or,
equivalently Co(P)) is finite, then each element is
between a maximal and a minimal one. If C €
Co(P) then ex(C) is the union of the maximal and
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minimal elements of C. Moreover, Co(P) is a
convex geometry ([2], Theorem 3).

Example 3. Let (P, <) be a poset. For any X C P,

X +— X :={yeP:y<x forsomexe X}

defines a closure operator on P. Its closed sets are
the order ideals (down sets) of P and we denote this
lattice J(P). Since the union and intersection of
order ideals is again an order ideal, it follows that
J(P) is a sublattice of 2”. Then J(P) is a distribu-
tive lattice and so, J(P) is a convex geometry
closed under set-union and ex(S) is the set of all
maximal points Max(S) of the subposet S € J(P).
When P is finite, there is a 1-1 correspondence
between antichains of P and order ideals. Then the
games (%,v) and (<7, ¢) of Faigle and Kern, where
% is the family of down sets of P [6] and .7 is the
set of antichains of a hierarchy [7], are games on
distributive lattices.

3. The core of games on convex geometries

In the first part of this section we give some
standard results of polyhedrons (see [13]). A set
P C R" is called a polyhedron if there exists a ma-
trix 4 and a column vector b such that
P={xeR" Ax<b}. A set PCR" is called a
polytope if there exist x,...,x; € R" such that
P = conv{xy,...,x}. A set P C R" is a polytope if
and only if P is a bounded polyhedron ([13], p. 89).
The polyhedron P is bounded if and only if
{x € R": Ax< 0} = {0} ([13], p. 100).

A vertex of P is an element of P which is not a
convex combination of two other elements of P. If
the polyhedron P has at least one vertex, then P is
called pointed. The polyhedron P is pointed if and
only if {x € R": 4x =0} = {0}.

Now, we define the core of games with re-
stricted cooperation.

Definition 3. Let v € I'(Z). The core of the game v
1s the set

Core(Z,v) :={x € R": x(N) = v(N),
x(S) = v(S) forall S € £},

where for

x(0) = 0.

any SeZ,x(S)=> 5%, and

The following characterization for games on set
systems with a non empty core is shown by Faigle
[5]. The indicator function 1s: N — {0, 1} for the
subset S C N is given by

L J1 ifies,
1s() = {0 otherwise.

Theorem 2. Let & C 2V be a family such that
ON€c€Z and let v: ¥ — R be a game. Then
Core(ZL,v) # 0 if and only if for all S,...,S, €
L\{0} and m € N,

1 n 1 n
%;1& = 1y implies %;U(S[) < o(N).

Proof. See Theorem 4 of Faigle [5]. O

Furthermore, Core(%,v) # ) if and only if
min {(1y,x): (15,x) = v(S) forall § € £} <v(N).

The duality theorem of linear programming ([13],
p. 90) implies the following result.

Theorem 3. Let ¥ C 2V be a family such that
ONeL and let v: ¥ — R be a game. Then
Core(Z,v) # 0 if and only if for ys, ys = 0, for all
§e 2\{0},

Z vsls = 1y implies Z ysu(S) < v(N).
Se\0 Sez\b

Proposition 1. The core of a game on a convex
geometry is either empty or a polyhedron pointed.

Proof. For all i € N, we know that i € ex({i}). If
S ={i} then S\ i€ &. Since x; = x(S) —x(5\ i),
we obtain

{x e R": x(S) =0, forall § € £} = {0}. O

Definition 4. The positive core of the game v €
I'(¥) is defined by
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Core™(Z,v) :== {x € Core(Z,v):x; =0
forall i € N}.

Theorem 4. Let v be a game on a convex geometry
&L C2V such that Core(%,v) is non-empty and
v(S) = 0. Then, the following statements are equiv-
alent:

(a) The core of the game v is a polytope.

(b) The atoms {i} € &, for all i € N.

(c) Core(Z,v) = Core" (Z,v).

Proof. (a) = (b) If there exists j € N such that
{j} ¢ & we consider {j} € £. Let k € {j} with
k # j, and we define the vector x € R”,

-1 ifi=j,
X; — 1 if i = k,
0 otherwise.

This vector x # 0 satisfies x(N) =0, and
x(S) =0, for all €., because if j €S then
{]—'} C S, hence k € S. This is a contradiction with
statement (a).

(b) = (a) If {i} € ¥ for all i € N, then

{x e R":x(N) =0, x(S) > 0,forall Se £}
={0}.
Therefore, the polyhedron Core(#,v) is bounded.
(b) < (c) This equivalence is shown by

Faigle ([5], Theorem 9) for games on closure
spaces. [

4. The Weber set of games on convex geometries

The classic result states that if v: 2V — R, is
a convex (supermodular) game then Core(v) =
Weber(v), where the Weber set is the convex hull
of the marginal worth vectors for v [12]. In 1978,
Weber (see [14]) has shown that any game satisfies
Core(v) C Weber(v). Ichiishi [10] proved that if
Weber(v) C Core(v) then v is a convex game.
Thus, these results imply the following character-
ization of convex games:

v:2¥ — R, is a convex game if and only if Core(v)
= Weber(v).

We study these concepts for games on convex ge-
ometries. Edelman and Jamison defined a com-
patible ordering of a convex geometry ¥ C 2V asa
total ordering of the elements of N, i} < i, < --+ <
i, such that the set

{i],l'z,...,l'k}eg forall 1 <k<n.

A compatible ordering of ¥ corresponds exactly
to a maximal chain in . We denote by (%) the
set of all the maximal chains of .#. Given i € N,
and a maximal chain C, let

C(i) :={j € N: j<i in the chain C}.

Definition 5. Let v € I'(¥) and C € 4(¥). The
marginal worth vector a© € R" with respect to the
chain C in the game v is given by

a; = v(C(i)) = v(C(H) \ D),
The ith coordinate af represents the marginal

contribution of player i to the coalition of his
predecessors with respect to the chain C.

forall ie N.

Proposition 2. Let v € I'(¥) and C € (). For all
S € C, we have

> af =u(S).

jes

Proof. Let v € I'(.¥) and C € €(¥). We denote by
Sk the coalition of C such that |S;| = & for any
ke N. Put S() = (b and Sk = {il,iz,...,ik} for all
1<k<n. By definition, we have that a° =
v(C(i)) — v(C(i) \ i) and therefore it follows that

k

c _ C

D =D
J=1

JESk

for all k€ N. Note that S,=N and hence
Soval=0oN). O

JEN Tj
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Definition 6. The Weber set of a game v € I'(¥) is
the convex hull of the marginal worth vectors,

Weber(Z,v) := conv {a“:C € 6(Z)}.

We obtain the relation between the core and the
Weber set of a game on a convex geometry. If & is
the Boolean algebra 2" and v is an n-person co-
operative game, then the core of v is contained in
the Weber set. This result is due to Weber [14].
However, the inclusion Core(%,v) C Weber(%,v)
does not hold when v is a game on a convex ge-
ometry & # 2V,

In the following examples, we will use the
convex geometry Co(3) C 2", where N = {1,2,3}
and  Co(3) = {0, {1},{2}, {3} {1.2},{2.3}.
{1,2,3}}, is the collection of the convex subsets of
the poset 3 = {1 < 3}. There are four maximal
chains in ¥

Ci:0 {1} c{1,2} c {1,2,3},
Cy:0 C {2} c{1,2} c {1,2,3},
Cy:0 C {2} c {2,3} c {1,2,3},
Cy:0 C {3} C{2,3} c {1,2,3}.

The Hasse diagram of the lattice Co(3) is
N

{1,2} {2,3}

{1} {3}

Example 4. Let v: Co(3) — R be a game, given by

v(l) =v(2) =v(3) =0,
v(12) = 0v(23) = 2,
v(N)=13

The marginal worth vectors in the game v are

a“ = (v(1) — v(0),v(12) — v(1), v(N) — v(12))
=(0,2,1),

a® = (v(12) — v(2),v(2) — v(0),v(N) — v(12))
=(2,0,1),

a® = (v(N) — v(23),0(2) — v(0),v(23) — v(2))
=(1,0,2),

a“ = (v(N) = v(23),0(23) — v(3),v(3) — v(0))
=(1,2,0),

and hence

Weber(¥,v) = conv{(0,2,1),(2,0,1),(1,0,2),
(1,2,0)}.
On the other hand, the core of v is
Core(Z,v) = {x € Ri:xl +x, +x3 =3,
x<l, x <1}
= COnV{(O’ 2’ 1)’ (17 2’ O)’ (07 3’ O)’
(1,1, D}
Then we have that Core(%,v) € Weber(%,v) and
Weber( %, v)  Core(Z,v).

Example 5. Let v: Co(3) — R be a game, given by

o(1) = v(2) = v(3) =0,
v(12) =1,
v(23) =0,
v(N)=3

The marginal worth vectors in this game v are

a“ =(0,1,2), a® = (1,0,2), a® = (3,0,0),

a“ = (3,0,0),

and the Weber set is

Weber (%, v) = conv{(0, 1,2),(1,0,2),(3,0,0)}.

Now, we get that the core is the set

Core(Z,v) = {x € Ri:xl +x, +x3 =3, x3<2,
X1 < 3}

= conv{(0,1,2),(1,0,2),(3,0,0),
(0,3,0)}.



370 J.M. Bilbao et al. | European Journal of Operational Research 119 (1999) 365-372

In this example, each marginal worth vector co-
incides with some vertex of the core and hence
Weber(#,v) C Core(#,v). The following propo-
sition provides a special type of vertices of the
core.

Proposition 3. Let v € I'(¥) and C € €(&
vector a“ € Core(%,v), then a“
Core(Z,v).

). If the

is a vertex of

Proof. By Proposition 2, we have
c_

Zaj =

Jjes

for all § € C. Since each maximal chain in % has n

non-empty coalitions, we get n equations and due

to their linear independence, we can conclude that
¢ is a vertex of the polyhedron Core(#,v). O

5. Convex and quasi-convex games

Faigle and Kern [7] introduced the concept of a
convex game for a distributive lattice (o7, V, A). In
our model, a convex geometry £ is a lattice with
the join and meet operations

SVT=8SUT, SAT=S8SNT forall ST € &.

Definition 7. A game v € I'(.¥) is said to be convex
or supermodular if for all §,T € 2,

o(SVT)+v(SAT) =0v(S)+0o(T).

We introduce the concept of a quasi-convex
game for studying the core of the game.

Definition 8. A game v € I'(¢) is quasi-convex if
forall §,7 € & with SUT € ¥, we have

v(S) +o(T).

It is obvious that convex implies quasi-convex.

p(SUT)+0(SNT) >

Remark 1. Note that if there is only a maximal
chain in %, all games defined on ¥ are convex.

Proposition 4. A game v € I'(¥) is quasi-convex if
and only if for all S, T € & such that T C S and for
all i € ex(S)N T, we have

o(S) = v(S\ i) = vo(T) — o(T \ ).

Proof. Let S,7 € % such that T CS and let
i€ex(S)NT. Consider S=S\iand 7" =T. We
have

SNT=E\)NT=T\icZ,

SUT =(S\i)ur=Se 2.

Applying the definition of quasi-convexity to §'
and 7", it follows that

v(S) +u(T\ i) =v(S\i)+v(T).

Conversely, let S, 7 € . such that SUT € Z.
If TCS or SCT, then the equality is clear.
Consider SNT #S and SNT # T and let C €
%¢(¥) be a maximal chain such that SN7T,
T,SUTeC. As S\T#0, put |S\T|=k
and write S\ 7T = {i,i,...,i} with C(i) C
C(i) C --- C C(iy), i.e., the chain C is given by

'CTCTU{il}CTU{il,iz}C"'
CTU{Z],ZQ,,lk}:TUSC

Let R=SNT and denote S, = {i\,i,...,i;} for
all 1 <j<k with Sy = (). Then we have that for all
1<j<k, TUS; € & and
RUS;=(SNT)US; = (SUS;)) N
=SN(TUS)) e ¥

(TUs))

Now, considering the hypothesis, we get
o(RUS)) = v(RUS; ) <o(TUS;) —o(TUS; ),
since RUS; C TUS; and
ijeex(RUS)N(TUS)),

and now it follows that

o(S) — o(SNT) = v(RUS,) — v(R)

= zk: RUS;) —v(RUS;)]

j=1
k

gz (TUS)) —v(TUS;-1)]
=

= o(TUS)—o(T). O
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Theorem 5. A game v on a convex geometry £ is
quasi-convex if and only if a© € Core( %, v), for all
Ce¥b(Y).

Proof. (=) Let C be a maximal chain in %.
Proposition 2 implies that Y _ a7 = v(S) for all
S € C. It remains to prove that 3 ¢ a¢ > v(S) for
all SZC. Let S € & such that S ¢ C and put
IS|=s>1. Write S={ii...,ii}, where
C(i)) C C(ir) C --- C C(iy).

Denote by S; = {ijis,...,i;} for all 1</j<s
and Sy =0. For all 1<,/<s, we have §; =8N
C(i;) € & and also i; € ex(C(i;)). Proposition 4
implies that for all 1 <j<s, we have

o(C(i;)) = o(C(i;) \i;) = v(S)) — v(Si-1),

and hence

N

c_ c

2 4 =D 4
J=1

jes

> Y [(S) ~ (5]
v(S).

(«<=) For any S, 7€ & with SUT € &, let C €
%(<) be a maximal chain containing SN 7 and
S U T. The marginal worth vector a© € R”, belongs
to Core(Z,v), hence a®(S) = v(S) and a“(T) >
v(T). By construction, a“(SUT) =0v(SUT) and
a“(SNT)=uv(SNT). Therefore,

v(S) + o(T) < a“(S) + a“(T)
= a“(SUT)+a“(SNT)
= v SUT)+v(SNT). O

Corollary 1. A game v on a convex geometry & is
quasi-convex if and only if

Weber(%,v) C Core(Z,v).

Proof. It is a direct consequence of theorem since
the core of a game v € I'(¥) is a convex set. [

Remark 2. A similar characterization of submod-
ular games on distributive lattices is given in
Fujishige ([8], Theorem 3.18), who considered the
greedy algorithm for obtaining the result.

Example 6. Let v: Co(3) — R be a game, defined
by

o(l) =1, 0(2) = =1, v(3) = 1,

v(12) =v(23) =0, v(N) = 1.

This game is quasi-convex but it is not convex
since for S = {1} and T = {3}, we have SA T = (),
SvT={1,3} =N and

1=v(N)+vd) <v(l)+v3)=1+1=2.

The marginal worth vectors for v are:

G Cs

=a"=(1,-1,1),

=a
and hence
Weber( %, v) = Core(Z,v) ={(1,—1,1)}.

In the above example, we obtain that the core
and the Weber set are equals, for a non convex
game. Then, the property Weber(%,v) C
Core(%,v) is not a characterization of the convex
games on convex geometries.

Definition 9. A game v € I'(¥) is monotone if
S C T implies v(S) < o(T).

Note that if v is monotone then

v(S) = v(d) =0, forall S € .

Theorem 6. Let v e I'(¥) be a monotone game.
Then, the game v is convex if and only if
Weber(#,v) C Core(Z,v).

Proof. If v is convex then it is quasi-convex and
corollary 1 of Theorem 5 implies the property.
Conversely, for S, T € £, let C be a maximal chain
containing to SVT=SUT and SAT=85NT.
We observe that a“(S) = v(S) and a“(T) = o(T),
since the marginal worth vector a¢ € Core(Z,v).
On the other hand, a“ = v(C(i)) — v(C(i) \ i) = 0
since v is monotonic and therefore a“ > 0.
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By Proposition 2,

a“(SUT) =v(SUT) and

a“(SNT)=uv(SNT). We get the result from the
following inequalities

o(S) +o(T) < a“(S) +a“(T)

= a“(SUT)+d(SNT)

< a(SUT) +a“(SNT)

= o(SUT)+v(SNT). O
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