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Abstract. Games with cooperation structure are cooperative games with a
family of feasible coalitions, that describes which coalitions can negotiate in
the game. We study a model of cooperation structure and the corresponding
restricted game, in which the feasible coalitions are those belonging to a par-
tition system. First, we study a recursive procedure for computing the Hart
and Mas-Colell potential of these games and we develop the relation between
the dividends of Harsanyi in the restricted game and the worths in the original
game. The properties of partition convex geometries are used to obtain for-
mulas for the Shapley and Banzhaf values of the players in the restricted game
vL, in terms of the original game v. Finally, we consider the Owen multilinear
extension for the restricted game.
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1. Cooperation structure

A cooperative game is a pair �N; v�, where N is a ®nite set and v : 2N ! R, is
a function with v�j� � 0. The elements of N � f1; 2; . . . ; ng are called players,
the subsets S A 2N coalitions and v�S� is the worth of S. By G N we denote the
set of all games �N; v�. We will use a shorthand notation and write S W i for
the set S W fig, and Sni for Snfig. The Shapley value for the player i A N is
de®ned by
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Fi�N; v� �
X

fSJN ji ASg

�sÿ 1�!�nÿ s�!
n!

�v�S� ÿ v�Sni��; �1�

where n � jNj; s � jSj. This value is an average of marginal contributions
v�S� ÿ v�Sni� of a player i to all possible coalitions S A 2N nfjg. In this value,
the sets S of di¨erent size get di¨erent weight. Dubey and Shapley [3] sug-
gested the following Banzhaf value,

b 0i�N; v� �
X

fS JNji A Sg

1

2nÿ1 �v�S� ÿ v�Sni��; i A N: �2�

``This de®nition enjoys the symmetry, dummy, and linearity properties
that are traditionally used to axiomatize the Shapley value. Only the
e½ciency axiom fails, since we have in general

P
i AN b 0i�N; v�0 v�N�''.

In cooperative game theory it is generally assumed that the whole group
of players decides to cooperate. However, the classical model seems to be in-
appropriate in modelling certain situations. So, the hypothesis of the Shapley
value (the probability of a coalition depend on its size, with the total proba-
bility of each size being the same) or the Banzhaf value (all coalitions are
equally possible) maybe unrealistic. Because of this, Myerson [11, p. 444]
proposed:

``the term cooperation structure to refer to any mathematical structure
that describes which coalitions (within the set of all 2n ÿ 1 possible
coalitions) can negotiate or coordinate e¨ectively in coalition game''.

Myerson [9] introduced the graph-restricted games and the Myerson value.
These games and this value were also investigated in Owen [14], who obtained
a formula for computing the dividends in restricted games, where the graph is
a tree. Borm, Owen and Tijs [1] de®ned the position value for communication
situations and provided a new axiomatic characterization of the Myerson
value.

In this paper, a general cooperation structure is considered, which is an
extension of the graph-restricted games. A set system on a ®nite ground set N
is a pair �N;F�, with FJ 2N . The sets belonging to F are called feasible
coalitions. For any S JN, maximal feasible subsets of S are called compo-
nents of S.

De®nition 1. A partition system is a pair �N;F� satisfying the following
properties:

(P1) j AF, and fig AF for every i A N.
(P2) For all S JN, the components of S, denoted by PS � fT1; . . . ;Tpg, form

a partition of S.

Proposition 1. A set system �N;F� which satis®es property �P1� is a partition
system if and only if F AF, G AF and F X G 0j imply F W G AF.
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Proof: Suppose F W G BF for some pair fF ;GgHF with F X G 0j. Then,
there exist two components fT1;T2g of F W G, such that T1 KF and T2 KG.
Hence, T1 X T2 KF X G 0j, which contradicts property (P2).

Conversely, if �N;F� satis®es property (P1), then S �6
i AS
fig for every

S JN. Let PS � fT1; . . . ;Tpg be the family of components of S. If PS is not
a partition of S, then Ti X Tj 0j, and hence Ti W Tj AF, which contradicts
the maximality of Ti and Tj . r

Example 1: The following collections of subsets of N, given by F �
fj; f1g; . . . ; fngg, and F � 2N , are the minimal and maximal partition
systems.

Example 2: In a sequencing situation there is a queue, consisting of n
customers waiting to be served at a counter. Curiel, Pederzoli and Tijs [2]
introduced sequencing games �N; v�, de®ned by v�S� :�Pfv�T�jT A PSg,
where v�T� is equal to the maximal cost savings the coalition can obtain by
rearranging their positions in the queue. The components of PS are the maxi-
mal intervals of S in a total order on N. If �N; v� is a sequencing game then
�N;U� is a chain and the collection F � fT JNjT is an interval ofNg, is a
partition system.

Example 3: A communication situation is a triple �N;G; v�, where �N; v� is
a game and G � �N;E� is a graph. This concept was ®rst introduced by
Myerson [9], and investigated by Owen [14] and Borm, Owen and Tijs [1]. In
this model, the set system

F � fS JNj�S;E�S�� is a connected subgraph of Gg;

is a partition system.

Example 4: A hypergraph communication situation is a triple �N;H; v�,
where �N; v� is a game and HJ 2N is a hypergraph. The idea of modelling
communication by means of conferences H AH is due to Myerson [10]. The
collection of the interaction sets (see van den Nouweland, Borm and Tijs [13])
plus the empty set, is a concept equivalent to that of partition system.

2. Restricted games

Let �N;F� be a partition system. The F-restricted game associated to �N; v�
is the game �N; vF�, de®ned by

vF�S� �
X
fv�T�jT A PSg;

where PS is the collection of the components of S JN. If S AF then
vF�S� � v�S�.

Note that if the partition system �N;F� is de®ned by a communication
situation, the restricted game is called a graph-restricted game. The map
LF : G N ! G N , de®ned by LF�v� � vF, is a linear operator.
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Remark 1: If F is the partition system of Example 3, then the game vF is a
G-component additive game which are studied by Potters and Reijnierse [16].

Unanimity games are considered. For any T JN;T 0j,

uT �S� � 1; if T JS

0; otherwise,

�
is called the T-unanimity game. Every game is a linear combination of una-
nimity games,

v �
X

TJN

DT �v�uT ; where DT �v� �
X
SJT

�ÿ1�jT jÿjSjv�S�:

Following Harsanyi [6], we shall call DT �v� the dividend of T in the game v.
The linearity implies that

vF �
X

TJN

DT�v�uFT ; �3�

where the game uFT satis®es

uFT �S� �
X

F A PS

uT �F� � 1; if there exists F AFsuch that T JF JS

0; otherwise.

�
Owen [14, Theorems 2 and 3], gave the following result: The unanimity

games uT , where T is connected in the graph G, form a basis of the graph-
restricted games. We shall obtain a similar property for partition systems.

Theorem 1. If �N;F� is a partition system then the unanimity games
fuT jT AF;T 0jg form a basis of the vector space f�N; vF�jv A G Ng, i.e.,

vF �
X

T AF

DT�vF�uT ; where Dj�vF� � 0:

Proof: Every game �N; vF� is uniquely determined by the values fv�S�jS AF;
S 0jg. Then, the vector space of these games will be identi®ed with RjFjÿ1.
The unanimity game uFT � uT if and only if T AF, hence the subset
fuT jT AF;T 0jg contains jFj ÿ 1 games of the type vF and it is lineary
independent. Therefore, it is a basis. r

3. Hart and Mas-Colell potential for restricted games

The potential function for cooperative games was de®ned by Hart and Mas-
Colell [7]. Given a game �N; v� and a coalition S JN, the subgame �S; v�
is obtained by restricting v to 2S. Let G denote the set of all games. The
potential is a function P : G ! R which assigns to each game �N; v� a real
number P�N; v� and satis®es the following equations
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P�j; v� � 0; P�S; v� � 1

jSj v�S� �
X
i AS

P�Snfig; v�
" #

;S A 2Nnfjg: �4�

Moreover, the marginal contribution of a player i coincides with the Shap-
ley value:

P�N; v� ÿ P�Nnfig; v� � Fi�N; v�; Ei A N:

There are two explicit formulas for the potential (see [7, Prop. 1 and 2]),

P�N; v� �
X
SJN

DS�v�
jSj ;

P�N; v� �
X
SJN

�sÿ 1�!�nÿ s�!
n!

v�S�; n � jNj; s � jSj:

De®nition 2. Let �N;F� be a partition system. The F-restricted potential of the
game �N; v� is de®ned by P�N; vF�.

The recursive procedure de®ned by the formula (4) implies an algorithm
for computing P�N; vF�. A new algorithm, in terms of v, is stated in the next
theorem.

Theorem 2. The restricted potential P�N; vF� satis®es:

P�S; vF� � 1

jSj v�S� �
X
i AS

P�Snfig; vF�
" #

; for all S AF:

P�S; vF� �
X
fP�Sk; v

F�j Sk A PSg; for all S BF:

Proof: If S 2F, then vF�S� � v�S�. Let S BF. It follows from [7, Prop. 1]
that

P�S; vF� �
X
TJS

DT�vF�
jT j :

By Theorem 1 we know that DT�vF� � 0 unless T AF, hence

P�S; vF� �
X

fT AFjTJSg

DT�vF�
jT j :

Since S BF, property (P2) implies that S �6p

k�1 Sk, where PS �
fS1; . . . ;Spg is the collection of components of S. Then, we have the partition

fT AF jT JSg � 6
p

k�1
fT AFjT JSkg:
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This implies that

P�S; vF� �
Xp

k�1

X
fT AF jTJSkg

DT �vF�
jT j

24 35 �Xp

k�1
P�Sk; v

F�: r

4. Convex geometries

Convex geometries are a combinatorial abstraction of convex sets introduced
by Edelman and Jamison [4].

De®nition 3. The ®nite set system �N;L� is a convex geometry on N if it sat-
is®es the properties:

(C1) j AL,
(C2) L is closed under intersections,
(C3) If C AL and C 0N, then there exists j A NnC such that C W j AL.

Property (C2) implies that intersections of feasible coalitions should also
be feasible, since the players agree on a pro®le of cooperation. In the model of
conference structures by Myerson [10], two players are connected if they can
be coordinated by meeting in separate conferences which have some members
in common to serve as intermediaries. In our model, the coalitions of inter-
mediaries are in the cooperation structure.

A maximal chain ofLJ 2N is an ordered collection of convex sets that is
not contained in any larger chain. From property (C3) and by induction,
Edelman and Jamison [4] showed that every maximal chain contains n� 1
convex sets

j � S0 HS1 H � � � HSnÿ1 HSn � N;

and the cardinal jSkj � k, for all k � 0; 1; . . . ; n. Thus, the hierarchical situa-
tions by Moulin [8], when users pay their incremental costs according to an
ordering of N, can be modeled by convex geometries.

For any subset S of N we de®ne the closure of S, denoted by S, to be

S :�7fCjC AL;C KSg:

The map ÿ : 2N ! 2N is a closure operator [18, p. 159], with the additional
condition that j � j. The subsets in the collection L or, equivalently, those
subsets of N such that S � S, will be called convex sets. Every convex geom-
etry �N;L� satis®es the anti-exchange property (see Edelman and Jamison
[4]),

ES JN; i; j B S; j A S W i) i B S W j:

This property is a combinatorial abstraction of the convex closure in
Euclidean spaces. That is, in Figure 1, the points x and y are not in the con-
vex hull of the set S. If y is in conv�S W x� then x is outside conv�S W y�.
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An element i of a convex set C AL is an extreme point of C if Cni AL.
The set of extreme points of C is denoted by ex�C�. The convex geometries
are the abstract closure spaces satisfying the ®nite Minkowski-Krein-Milman
property: Every convex set is the closure of its extreme points.

De®nition 4. A partition convex geometry is a convex geometry �N;L� which
satis®es properties (P1) and (P2).

In the following it will be neccesary several concepts of graph theory. A
graph G � �N;E� is connected if any two vertices can be joined by a path. A
maximal connected subgraph of G is a component of G. A cutvertex is a vertex
whose removal increases the number of components, and a bridge is an edge
with the same property. A graph is 2-connected if it is connected, has at least 3
vertices and contains no cutvertex. A subgraph B of a graph G is a block of G
if either B is a bridge or else it is a maximal 2-connected subgraph of G.

A graph G is a block graph if every block is a complete graph. The block
graphs are called cycle-complete graphs in van den Nouweland and Borm [12].
If G is a disjoint union of trees, then G is a block graph. Jamison [4, Th. 3.7]
showed: G � �N;E� is a connected block graph if and only if the collection of
subsets of N which induce connected subgraphs is a convex geometry.

Example 5: Let G � �N;E� be a connected block graph. In this situation, the
family

L � fS JNj�S;E�S�� is a connected subgraph of Gg;

is a partition convex geometry.

Example 6: A subset S of a poset �P; U � is convex whenever a A S; b A S and
aU b imply �a; b�JS. The convex subsets of any poset P form a closure sys-
tem which is denoted by Co�P�. If C A Co�P� then ex�C� is the union of the
maximal and minimal elements of C. Moreover, Co�P� is a convex geometry.
Edelman [5] studied voting games such that the feasible coalitions are the
convex sets of Co�P�, where P is the chain de®ned by the policy order (see
Figure 2).

Fig. 1. The anti-exchange
property
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Let �N;L� be the partition convex geometry of subsets of vertices which
induce connected subgraphs of the graph G � �N;E�. If G is a tree, then
Owen [14, Theorems 6 and 7] gave the following formula for computing the
dividends in the game vL,

DS�vL� �
X

fTJN j ex�S�JTJSg
DT�v�:

Next, this formula is extended to the case when the graph is a connected
block graph. Indeed, the formula holds in every partition convex geometry
and can be showed by means of the Minkowski-Krein-Milman property.

Proposition 2. Let �N;L� be a partition convex geometry and let �N; v� be a
game. The dividends of S AL in the restricted game vL are

DS�vL� �
X

fTJN jT�Sg
DT �v� �

X
fTJN j ex�S�JTJSg

DT�v�:

Proof: By formula (3), vL �PTJN DT�v�uLT and by Theorem 1, vL �P
S AL DS�vL�uS. We claim that uLT � uT for every nonempty coalition

T JN. To verify this claim, consider the following equivalent conditions for
all S JN:

uLT �S� � 1, bC AL such that T JC JS , T JS , uT�S� � 1:

Then, the coe½cients satisfy

DS�vL� �
X

fTJNjT�Sg
DT �v�:

Next, we show that for all S AL,

fT JNjT � Sg � fT JNjex�S�JT JSg:

Fig. 2. The convex geometry
Co�f1 < 2 < 3 < 4 < 5g�
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Let T JN be such that T � S. Then, T JT � S, and S AL. But since
every convex set is the closure of its extreme points, the set ex�S� is a
minimal subset of S such that ex�S� � S, hence ex�S�JT JS. Conversely,

if ex�S�JT JS, we obtain S � ex�S�JT J S � S. r

The relation between the dividends of Harsanyi in the restricted game vL

and the worths in the original game v is given by the next result.

Proposition 3. Let �N;L� be a partition convex geometry and let v A G N. If vL

is the restricted game associated to v then

DS�vL� �
X

T A �Sÿ;S�
�ÿ1�jSjÿjT jv�T�, where Sÿ � Snex�S�:

Proof: It follows from Theorem 1 that

v�S� � vL�S� �
X

T AL

DT �vL�uT �S� �
X

fT ALjTJSg
DT�vL�; ES AL:

The partition convex geometry is a lattice and its MoÈbius function is
computed in [4, Th. 4.3]:

m�T ;S� � �ÿ1�jSjÿjT j; if SnT J ex�S�
0; otherwise.

(

Then, the MoÈbius inversion formula of L implies (see [18, p. 116]) that

DS�vL� �
X

fT ALjTJSg
v�T�m�T ;S�

�
X

fT ALjS nTJex�S�g
�ÿ1�jSjÿjT jv�T�:

We know that fT ALjSnT J ex�S�g � �Sÿ;S� and so, we obtain the
formula for the dividends. r

5. The Shapley and Banzhaf values

Let �N;L� be a partition convex geometry and let �N; v� be a game. The
Shapley value for the player i in the restricted game vL is given by Fi�N; vL�,
for all i A N. The Banzhaf value for the player i in the game vL is given by
b 0i�N; vL�, for all i A N. If G is a connected block graph, then the Shapley
value is the Myerson value. In terms of dividends [14, p. 212], we have

Fi�N; vL� �
X

fSJNji ASg

DS�vL�
jSj ; b 0i�N; vL� �

X
fSJNji ASg

DS�vL�
2jS nij

: �5�
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Edelman and Jamison [4, Th. 4.2] proved that if �N;L� is a convex
geometry and S AL, then the interval �Sÿ;S� � fC ALjSÿJC JSg is a
Boolean algebra, where Sÿ � Snex�S�. Then, �Sÿ;S� is isomorphic to
2ex�S�. Now, the interval �T ;T�� is considered, where T AL and T� �
fi A NjT W i ALg.

Proposition 4. Let �N;L� be a partition convex geometry. Then we have:

(a) If T AL and T 0j, then �T ;T�� is a Boolean algebra isomorphic to
2T�nT .

(b) If T � j, then �T ;T�� �L.

Proof:
(a) Since the interval �T ;T�� � fS ALjT JS JT�g is isomorphic to

subsets of

T�nT � f j A NnT jT W j ALg;

the result is obtained.
(b) Property (P1) implies that fig AL for all i A N. If T � j, then

T� � N. r

In the next theorem two explicit formulas, in terms of v, for the Shapley
and Banzhaf values of the players in the restricted game vL, are proved. We
need the following lemma.

Lemma 1. The �N;L� be a partition convex geometry and let T AL;T 0j.
Then,

fS ALjT A �Sÿ;S�g � �T ;T��:

Proof: We ®rst show that if S AL and SÿJT JS, then S A �T ;T��. Since
T JS it is su½cient to prove that SnT JT�nT � f j A NnT jT W j ALg.

For any j A SnT ;T W j A �Sÿ;S� and we know that the interval is a
Boolean algebra. This implies that T W j AL.

Conversely, suppose S A �T ;T��. Then by Proposition 4(a) we have S AL.
We shall show that SnT J ex�S�, i.e., SÿJT JS. Since �T ;T�� is a Boo-
lean algebra, we have that j A SnT implies Sn j A �T ;T�� and hence Sn j AL.
Therefore j A ex�S�. r

Theorem 3. Let �N;L� be a partition convex geometry and let �N; v� be a
game. If it is considered the following collections,

Li � fT ALji A Tg;
L�i � fT ALji A ex�T�; �Tni�� � T�g;
L?

i � fT ALji B T ;T W i AL;T�0 �T W i��g;

for all i A N, then:
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(a) The Shapley value for the player i in the restricted game vL satis®es

Fi�N; vL� �
X

T AL�
i

�tÿ 1�!�t� ÿ t�!
t�!

�v�T� ÿ v�Tni��

�
X

T ALi nL�i

�tÿ 1�!�t� ÿ t�!
t�!

v�T� ÿ
X

T AL?
i

�t�!�t� ÿ tÿ 1�!
t�!

v�T�:

(b) The Banzhaf value for the player i in the restricted game vL satis®es

b 0i�N; vL� �
X

T AL�
i

1

2t�ÿ1 �v�T� ÿ v�Tn i ��

�
X

T ALi nL�i

1

2t�ÿ1 v�T� ÿ
X

T AL?
i

1

2t�ÿ1 v�T�;

where t � jT j, and t� � jT�j.

Proof: (a) By Theorem 1, we know that DS�vL� � 0 unless S AL. We use the
formula (5) and Proposition 3 for computing

Fi�N; vL� �
X

fS ALji ASg

DS�vL�
jSj �

X
fS ALji ASg

1

jSj
X

T A �Sÿ;S�
�ÿ1�jSjÿjT jv�T�

24 35:
Reversing the order of summation, we obtain

Fi�N; vL� �
X

T AL

X
fS ALji AS;T A �Sÿ;S�g

�ÿ1�jSjÿjT j
jSj

24 35v�T� �
X

T AL

ci�T�v�T�:

We apply Lemma 1 to the term in brackets, and denote s � jSj and
t � jT j. Thus

ci�T� �
X

fS A �T ;T��ji ASg

�ÿ1�sÿt

s
�

X
fS ALjTW iJSJT�g

�ÿ1�sÿt

s
:

First, the case i A T is considered. The interval �T ;T�� is a Boolean
algebra, hence the summation index is fS A 2N jT JS JT�g. We consider
S � T W R, where R � SnT and r � jRj. Then,

ci�T� �
X

RJT�nT

�ÿ1�r
t� r

�
Xt�ÿt

r�0

t� ÿ t

r

� � �ÿ1�r
t� r

�
Xt�ÿt

r�0

t� ÿ t

r

� �
�ÿ1�r

�1
0

xt�rÿ1 dx
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�
�1
0

xtÿ1 Xt�ÿt

r�0

t� ÿ t

r

� �
�ÿx�r dx

�
�1
0

xtÿ1�1ÿ x�t�ÿt
dx

� �tÿ 1�!�t� ÿ t�!
t�!

:

Next, assume that i B T , hence the index is fS ALjT W i JS JT�g.
Then i A T� and T� � T W f j B T jT W j ALg implies that T W i AL. Now,
the previous result yields (�T W i;T�� is a Boolean algebra):

ci�T� � ÿ
X

fS A 2N jTW iJSJT�g

�ÿ1�sÿ�t�1�
s

� ÿ t!�t� ÿ tÿ 1�!
t�!

:

Inserting the coe½cients, we have

Fi�N; vL� �
X

T ALi

�tÿ 1�!�t� ÿ t�!
t�!

v�T�

ÿ
X

fT ALji BT ;TW i ALg

�t�!�t� ÿ tÿ 1�!
t�!

v�T�: �6�

For any T ALi, if i A ex�T� and �Tni�� � T�, then T AL�i , hence
Tni AL and ci�Tni� � ÿci�T�. Consequently, its contribution to the sum is
ci�T��v�T� ÿ v�Tni��. If T ALinL�i , then its term of the sum is ci�T�v�T�.

Finally, for any T AL with i B T and T W i AL, such that T�0
�T W i��, i.e., T AL?

i , the coe½cients ci�T� and ÿci�T W i� are di¨erents.
Therefore, its contribution is ci�T�v�T� (where i B T implies ci�T� < 0).

(b) The proof of the formula of the Banzhaf value is similar to the proof of
(a). The only di¨erence is that the coe½cients are:

ci�T� �
Xt�ÿt

r�0

t� ÿ t

r

� �
�ÿ1�r 1

2

� �t�rÿ1
� 1

2

� �t�ÿ1
; if i A T ;

ci�T� � ÿ 1

2

� �t�ÿ1
; if i B T and T W i AL: r

Notice that if L � 2N , then ex�T� � T , and T� � N for every T AL.
Thus, the formulas of Theorem 3 are equals to the Shapley (1) and Banzhaf
(2) values. Moreover, the equation (6) is equal to the equation of Shapley (see
reprint in [17, p. 35]). The formulas for computing these values can be further
simpli®ed when the player is a extreme point of N. Before doing so, we will
need a lemma.
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Lemma 2. Let �N;L� be a partition convex geometry. If i A ex�N�, then we
obtain

fT ALi

�� jT jV 2g � fT AL�i
�� jT jV 2g:

Proof: If T ALi, then Tni � T X �Nni� AL and so i A ex�T�. For all T ALi

with jT jV 2, note that T AL�i , �Tni�� � T�. We prove that these sets are
equals.

First, if j A T�, with j B T then �Tni�W j � �Nni�X �T W j� AL. Hence,
we stated that j A �Tni��.

Conversely, take j A �Tni��. If j � i we obtain the result and if j 0 i, ob-
serve that ��Tni�W j�X T � Tni 0j because jT jV 2. Then, by Proposition
1, �Tni�W j W T � T W j AL, and so j A T�. r

Theorem 4. Let �N;L� be a partition convex geometry and let �N; v� be a game
such that v�fig� � 0 for all i A N. If i A ex�N�, then the values for the player i in
vL satisfy

Fi�N; vL� �
X

T AL

�tÿ 1�!�t� ÿ t�!
t�!

�v�T� ÿ v�Tni��;

b 0i�N; vL� �
X

T AL

1

2t�ÿ1 �v�T� ÿ v�Tni��;

where t � jT j and t� � jT�j.

Proof: By Lemma 2, if T 0j; i B T , and T W i AL then �T W i�� � T�.
Therefore, L?

i � fT ALji B T ;T W i AL; �T W i��0T�g � fjg. The index
of ci�T��v�T� ÿ v�Tni�� in Theorem 3 is fT ALij jT jV 2g, and �v�T�ÿ
v�Tni�� � 0, if i B T or jT jU 1. r

The explicit formula for the potential of vL can be obtained by a similar
method to the one that is used in Theorem 3.

Theorem 5. Let �N;L� be a partition convex geometry and let �N; v� be a
game. Then the potential of vL satis®es

P�N; vL� �
X

T AL

�tÿ 1�!�t� ÿ t�!
t�!

v�T�; where t � jT j; t� � jT�j:

Example 7: Let �N; v� be the four-person apex game, that is, the simple game
with the winning coalitions,

W � ff1; 2g; f1; 3g; f1; 4g; f1; 2; 3g; f1; 2; 4g; f1; 3; 4g; f2; 3; 4g;Ng:

The Shapley and Banzhaf values are [15, p. 143]:

F�N; v� � 1

2
;
1

6
;
1

6
;
1

6

� �
; b 0�N; v� � 3

4
;
1

4
;
1

4
;
1

4

� �
:
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The cooperation structure de®ned in Example 6 is considered. Thus,
�N;U� is a chain with 1 < 2 < 3 < 4 and the partition convex geometry is

L � fj; f1g; f2g; f3g; f4g; f1; 2g; f2; 3g; f3; 4g; f1; 2; 3g; f2; 3; 4g;Ng:

The collection of coalitions which are both winning and convex is

WXL � ff1; 2g; f1; 2; 3g; f2; 3; 4g;Ng:

Theorem 4 is used to compute the values in vL of the players 1 and 4,

F1�N; vL� � 1

3!
�v�12� ÿ v�2�� � 2

4!
�v�123� ÿ v�23�� � 1

4
;

F4�N; vL� � 2

4!
�v�234� ÿ v�23�� � 1

12
;

b 01�N; vL� �
1

2

� �2
� 1

2

� �3
� 3

8
; b 04�N; vL� �

1

2

� �3
� 1

8
:

To calculate the values in vL of the players 2 and 3, we use Theorem 3. If
i � 2, then WXL�2 � j, WX �L2nL�2 � �WXL and WXL?

2 � j.
Now, it is followed,

F2�N; vL� � 1

3!
�v�12�� � 2

4!
�v�123� � v�234�� � 3!

4!
v�N� � 7

12
;

b 02�N; vL� �
1

2

� �2
�2 1

2

� �3
� 1

2

� �3
� 5

8
:

For i � 3, WXL�3 � j, WX �L3nL�3 � � ff1; 2; 3g; f2; 3; 4g;Ng,
WXL?

3 � ff1; 2gg. Hence,

F3�N; vL� � 2

4!
�v�123� � v�234�� � 3!

4!
v�N� ÿ 2

3!
v�12� � 1

12
;

b 03�N; vL� �
1

8
:

Then, the Shapley and Banzhaf values in the restricted game vL are

F�N; vL� � 1

4
;
7

12
;
1

12
;
1

12

� �
; b 0�N; vL� � 3

8
;
5

8
;
1

8
;
1

8

� �
:

6. Owen multilinear extension

The multilinear extension (MLE) of the game �N; v� is the function of n real
variables (see Owen [15]),

f �v��q1; . . . ; qn� �
X
SJN

Y
j AS

qjDS�v�;
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where DS�v� is the dividend of S in the game �N; v�. Owen showed that

Fi�N; v� �
�1
0

qf �v�
qqi
�t; . . . ; t� dt; b 0i�N; v� �

qf �v�
qqi

1

2
; . . . ;

1

2

� �
:

Proposition 5. Let �N;L� be a partition convex geometry and let �N; v� be a
game. Then, the MLE of vL is given by

f �vL��q1; . . . ; qn� �
X
S AL

Y
j AS

qj

X
T A �Sÿ;S�

�ÿ1�jSjÿjT jv�T�
24 35:
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