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Abstract. Cooperative games on antimatroids are cooperative games restricted
by a combinatorial structure which generalize the permission structure. So,
cooperative games on antimatroids group several well-known families of
games which have important applications in economics and politics. There-
fore, the study of the rectricted games by antimatroids allows to unify cri-
teria of various lines of research. The current paper establishes axioms that
determine the restricted Shapley value on antimatroids by conditions on the
cooperative game v and the structure determined by the antimatroid. This
axiomatization generalizes the axiomatizations of both the conjunctive and
disjunctive permission value for games with a permission structure. We also
provide an axiomatization of the Shapley value restricted to the smaller class
of poset antimatroids. Finally, we apply our model to auction situations.
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1 Introduction

A cooperative game describes a situation in which a finite set of players N can
generate certain payo¤s by cooperation. In a cooperative game the players are
assumed to be socially identical in the sense that every player can cooperate
with every other player. However, in practice there exist social asymmetries
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among the players. For this reason, the game theoretic analysis of decision
processes in which one imposes asymmetric constraints on the behavior of the
players has been and continues to be an important subject to study. Important
consequences have been obtained of adopting this type of restrictions on
economic behavior. Some models which analyze social asymmetries among
players in a cooperative game are described in, e.g., Myerson (1977), Owen
(1986) and Borm, Owen, and Tijs (1992). In these models the possibilities of
coalition formation are determined by the positions of the players in a com-
munication graph.

Another type of asymmetry among the players in a cooperative game is
introduced in Gilles, Owen and van den Brink (1992), Gilles and Owen (1999),
van den Brink and Gilles (1996) and van den Brink (1997). In these models,
the possibilities of coalition formation are determined by the positions of the
players in a hierarchical permission structure. Two di¤erent approaches were
introduced for these games: conjunctive and disjunctive. Algaba, Bilbao, van
den Brink and Jiménez-Losada (2000) showed that the feasible coalition sys-
tems derived from both approaches were identified to poset antimatroids and
antimatroids with the path property, respectively. Games on antimatroids are
introduced in Jiménez-Losada (1998).

On the other hand, Brânzei, Fragnelli and Tijs (2002) have introduced peer
group games as games based on the existence of certain dependences among
the players and which are described by a rooted tree. This type of games
allows to study particular cases of auction situations, communication situa-
tions, sequencing situations or flow games. These games are restricted games
on poset antimatroids with the path property. This class of antimatroids are
the permission forest and permission tree structures which are often encountered
in the economic literature. So, the study of games on antimatroids allows to
unify several research lines in the same one. Another model in which cooper-
ation possibilities in a game are limited by some hierarchical structure on the
set of players can be found in Faigle and Kern (1992) who consider feasible
rankings of the players.

In Section 2 we discuss some preliminaries on antimatroids and permis-
sion structures. An axiomatization of the restricted Shapley value for games on
antimatroids is presented in Section 3. Our six axioms generalize the axiomati-
zations of both the conjunctive and disjunctive permission values for games
with a permission structure. In particular, with respect to these we unify the
fairness axioms used in both conjunctive and disjunctive approaches. In Sec-
tion 4, we restrict our attention on the special class of poset antimatroids,
showing that deleting the fairness axiom characterizes the restricted Shapley
value for the class of cooperative games on poset antimatroids. Moreover, it
turns out that the class of games on poset antimatroids is characterized as that
class of games on which the restricted Shapley value is the unique solution
satisfying these axioms. This then also characterizes the Shapley value for
games on poset antimatroids satisfying the path property. Finally, an applica-
tion to auction situations is given in Section 5.

2 Cooperative games on antimatroids

A cooperative game is a pair ðN; vÞ, where N ¼ f1; . . . ; ng is a finite set of
players and v : 2N ! R is a characteristic function on N satisfying vðqÞ ¼ 0.
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Since we take the player set N to be fixed we represent a cooperative game by
its characteristic function v. A cooperative game v is monotone if vðEÞa vðF Þ
whenever E JF JN.

We assume that the set of feasible coalitions AJ 2N is an antimatroid.
Antimatroids were introduced by Dilworth (1940) as particular examples of
semimodular lattices. A symmetric study of these structures was started by
Edelman and Jamison (1985) emphasizing the combinatorial abstraction of
convexity. The convex geometries are a dual concept of antimatroids (see
Bilbao, 2000).

Definition 1. An antimatroid A on N is a family of subsets of 2N, satisfying

A1. q A A.
A2. (Accessibility) If E A A, E 0q, then there exists i A E such that

Enfig A A.
A3. (Closed under union) If E;F A A then E WF A A.

The definition of antimatroid implies the following augmentation property:
if E;F A A with jEj > jF j then there exists i A EnF such that F W fig A A.

From now on, we only consider antimatroids satisfying

A4. (Normality) For every i A N there exists an E A A such that i A E.

In particular, this implies that N A A. Now we introduce some well-
known concepts about antimatroids which can be found in Korte, Lovász and
Schrader (1991, Chapter III). Let A be an antimatroid on N. This set family
allows to define the interior operator intA : 2N !A, given by intAðEÞ ¼
6

FJE;F AA F A A, for all E JN. This operator satisfies the following prop-
erties which characterize it:

I1. intAðqÞ ¼q,
I2. intAðEÞJE,
I3. if E JF then intAðEÞJ intAðF Þ,
I4. intAðintAðEÞÞ ¼ intAðEÞ,
I5. if i; j A intAðEÞ and j B intAðEnfigÞ then i A intAðEnf jgÞ.

Let A be an antimatroid on N. An endpoint or extreme point (Edelman
and Jamison, 1985) of E A A is a player i A E such that Enfig A A, i.e., those
players that can leave a feasible coalition E keeping feasibility. By condition
A2 (Accessibility) every non-empty coalition in A has at least one endpoint.
A set E A A is a path in A if it has a single endpoint. The path E A A is called
a i-path in A if it has i A N as unique endpoint. A coalition E A A if and only
if E is a union of paths. Moreover, for every E A A with i A E there exists
an i-path F such that F JE. The set of i-paths for a given player i A N will
be denoted by AðiÞ.

The next concept is based on paths in an antimatroid and it is necessary
to describe certain permission structures. This notion is closely related to the
conditions on paths that are obtained in a tree.
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Definition 2. An antimatroid A on N is said to have the path property if

P1. Every path E has a unique feasible ordering, i.e. E :¼ ði1 > � � � > itÞ such
that fi1; . . . ; ikg A A for all 1 a k a t. Furthermore, the union of these
orderings for all paths is a partial ordering of N.

P2. If E;F and Enfig are paths such that the endpoint of F equals the endpoint
of Enfig, then F W fig A A.

Observe that every path has a unique feasible ordering if and only if for
any i-path E with jEj > 1 we have that Enfig is a path. A special class of
antimatroids are the poset antimatroids being antimatroids that are closed
under intersection.

Definition 3. An antimatroid A is a poset antimatroid if E XF A A for every
E;F A A.

For a cooperative game v and an antimatroid A on N we define the
restricted game vA which assigns to every coalition E the worth generated by
the interior of E, i.e., vAðEÞ ¼ vðintAðEÞÞ, for all E JN. For properties of
these restricted games we refer to Algaba et al. (2000). A solution for games
on antimatroids is a function f that assigns a payo¤ distribution f ðv;AÞ A Rn

to every cooperative game v and antimatroid A on N. The restricted Shapley

value Shðv;AÞ for a cooperative game v and an antimatroid A on N is
obtained by applying the Shapley value (Shapley, 1953) to game vA, i.e.,

Shiðv;AÞ ¼ ShiðvAÞ ¼
X

fEJN:i AEg

dvAðEÞ
jEj ;

where

dvðEÞ ¼
X

TJE

ð�1ÞjEj�jT jvðTÞ

denotes the dividend of the coalition E in game v.
As we have already indicated games on antimatroids generalize coopera-

tive games with an acyclic permission structure. A permission structure on N
is a mapping S : N ! 2N . The players in SðiÞ are called the successors of i in
S. The players in S�1ðiÞ :¼ f j A N : i A Sð jÞg are called the predecessors of i
in S. By ŜS we denote the transitive closure of the permission structure S, i.e.,
j A ŜSðiÞ if and only if there exists a sequence of players ðh1; . . . ; htÞ such that
h1 ¼ i, hkþ1 A SðhkÞ for all 1 a k a t� 1 and ht ¼ j. The players in ŜSðiÞ are
called the subordinates of i in S. A permission structure S is acyclic if i B ŜSðiÞ
for all i A N. In the conjunctive approach as developed in Gilles, Owen and
van den Brink (1992), it is assumed that each player needs permission from
all its predecessors before it is allowed to cooperate. This implies that the set
of feasible coalitions is given by

Fc
S ¼ fE JN : S�1ðiÞJE for every i A Eg:

Alternatively, in the disjunctive approach as discussed in Gilles and Owen
(1999) it is assumed that each player that has predecessors only needs per-
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mission from at least one of its predecessors before it is allowed to cooperate
with other players. Consequently, the set of feasible coalitions is given by

Fd
S ¼ fE JN : S�1ðiÞ ¼q or S�1ðiÞXE 0q for every i A Eg:

Algaba et al. (2000) show that for every acyclic permission structure S, both
Fc

S and Fd
S are antimatroids. Moreover, the class of all sets of feasible coali-

tions that can be obtained as conjunctive feasible coalitions is exactly the class
of poset antimatroids. The class of all sets of feasible coalitions that can be
obtained as disjunctive feasible coalitions is exactly the class of antimatroids
satisfying the path property.

A solution for games with a permission structure is a function f that assigns
a payo¤ distribution f ðv;SÞ A Rn to every cooperative game v and permis-
sion structure S. The conjunctive permission value is obtained by applying the
Shapley value to the conjunctive restricted games vF c

S
, while the disjunctive

permission value is obtained by applying the Shapley value to the disjunctive
restricted games vF d

S
, i.e., they are the restricted Shapley values

Shðv;Fc
SÞ ¼ ShðvF c

S
Þ and Shðv;Fd

S Þ ¼ ShðvF d
S
Þ;

respectively.
The purpose in the next sections will be to generalize axiomatizations given

for the conjunctive and disjunctive permission values to obtain axiomatiza-
tions of the restricted Shapley value for cooperative games on antimatroids.

3 An axiomatization of the restricted Shapley value

We provide an axiomatization of the restricted Shapley value for games on
antimatroids generalizing the axiomatizations of the conjunctive and disjunc-
tive permission values given in van den Brink (1997, 1999). As we will see,
both axiomatizations are special cases of one axiomatization of the restricted
Shapley value for games on antimatroids. So, the study of games on anti-
matroids allows to elaborate common axioms for both approaches, being spe-
cially interesting the use of a same fairness axiom.

The first three axioms are straightforward generalizations of e‰ciency,
additivity and the necessary player property for cooperative games (with a
permission structure). For two cooperative games v and w the game ðvþ wÞ is
given by ðvþ wÞðEÞ ¼ vðEÞ þ wðEÞ for all E JN.

Axiom 1 (E‰ciency). For every cooperative game v and antimatroid A on N,P
i AN fiðv;AÞ ¼ vðNÞ.

Axiom 2 (Additivity). For every pair of cooperative games v;w and antimatroid
A on N, f ðvþ w;AÞ ¼ f ðv;AÞ þ f ðw;AÞ.

Axiom 3 (Necessary player property). For every monotone cooperative game v
and antimatroid A on N, if i A N satisfies vðEÞ ¼ 0 for all E JNnfig then
fiðv;AÞb fjðv;AÞ for all j A N.

Note that the necessary player axiom requires that all necessary players get
the same payo¤. Recall that player i is inessential in a game v with permission
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structure S on N if i and all its subordinates are null players in game v. This
concept extends the one of null player in a game v. Player i is a null player in
game v if vðEÞ ¼ vðEnfigÞ for all E JN. Let A be an antimatroid on N. The
path group Pi of player i is defined as the set of players that are in some i-path,
i.e., Pi ¼6

E AAðiÞ E. So, the path group of player i are all players on which
i has some dependence. Now, given an antimatroid A on N, we call i A N an
inessential player for A in v if player i and every player j A N such that i A P j

are null players in v. The description of the inessential player axiom is the
following.

Axiom 4 (Inessential player property). For every cooperative game v and anti-
matroid A on N, if i is an inessential player for A in v then fiðv;AÞ ¼ 0.

We generalize structural monotonicity for games with a permission struc-
ture by introducing a new set. Let A be an antimatroid on N. The basic path
group Pi of player i is given by those players that are in every i-path, i.e., Pi ¼
7

E AAðiÞ E. This set is formed by those players that control totally player i in

A, i.e., without them player i can not form any feasible coalition. Obviously,
i A Pi and Pi JPi.

Axiom 5 (Structural monotonicity). For every monotone cooperative game v and
antimatroid A on N, if j A N then for all i A Pj we have fiðv;AÞb fjðv;AÞ.

We can generalize both conjunctive and disjunctive fairness for games with
a permission structure by requiring that deleting a feasible coalition E from
antimatroid A, such that AnfEg is also an antimatroid, changes the payo¤s
of all players in E by the same amount.

Axiom 6 (Fairness). For every cooperative game v and antimatroid A on N, if
E A A is such that AnfEg is an antimatroid on N, then

fiðv;AÞ � fiðv;AnfEgÞ ¼ fjðv;AÞ � fjðv;AnfEgÞ for all i; j A E:

The next example shows that in general to delete a feasible coalition from
an antimatroid does not always give an antimatroid.

Example 1. Let N ¼ f1; 2; 3; 4g and the antimatroid given by

A ¼ fq; f1g; f1; 2g; f1; 3g; f1; 2; 3g; f1; 2; 4g; f1; 3; 4g;Ng:

If we consider the coalition E ¼ f1; 2; 3g then AnfEg is not an antimatroid
because f1; 2gWf1; 3g is not feasible anymore. Considering coalition H ¼ f1; 2g
it follows that AnfHg is not an antimatroid since there is no i A f1; 2; 4g such
that f1; 2; 4gnfig A AnfHg. However, taking F ¼ f1; 3; 4g it holds that AnfFg
is an antimatroid.

Note that given a permission structure S, applying this fairness axiom to
the antimatroid Fd

S ðFc
SÞ is equivalent to applying disjunctive (conjunctive)

fairness to the corresponding game with permission structure (see van den
Brink 1997, 1999). We say that coalition F A A covers coalition E A A if
E JF and jF j ¼ jEj þ 1.
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Lemma 1. Let A be an antimatroid and E A A. Then, AnfEg is an antimatroid
if and only if E is a path, E B fq;Ng and every F A A that covers E is not a
path.

Proof. Suppose that AnfEg is an antimatroid. Then obviously E B fq;Ng. If
E would not be a path then there would be i; j A E such that Enfig, Enf jg A
AnfEg. This would imply that EnfigWEnf jg A AnfEg, which is a contra-
diction with EnfigWEnf jg ¼ E. If there would exist a path F in A that
covers E then AnfEg would fail the accessibility property.

Suppose that E is a path in A, E B fq;Ng and every F A A that covers E
is not a path. We have to prove that AnfEg is an antimatroid. Since E 0q,
q A AnfEg. As E 0N, AnfEg is normal. Let E1;E2 A AnfEg. To show
that E1 WE2 A AnfEg it su‰ces to show that E1 WE2 0E. On the contrary,
suppose that E1 WE2 ¼ E. Then it is a path, assume a i-path. We can suppose
without loss of generality that i A E1. But this is a contradiction with the fact
that E1 JE; E1 0E, and E being a i-path. Finally, let F A AnfEg, F 0q. If
there is no i A F such that Fnfig A AnfEg then there is a unique i A F such
that Fnfig A A (since A is an antimatroid). Moreover, Fnfig ¼ E. But this is
a contradiction with the fact that every feasible coalition that covers E is not
a path. r

The restricted Shapley value for games on antimatroids satisfies the six axi-
oms introduced above.

Theorem 1. The restricted Shapley value Sh satisfies e‰ciency, additivity, the
necessary player property, the inessential player property, structural monoto-
nicity and fairness.

Proof. Let v be a cooperative game and A be an antimatroid on N.
1. Since N A A, e‰ciency of the Shapley value implies that

X

i AN

Shiðv;AÞ ¼
X

i AN

ShiðvAÞ ¼ vAðNÞ ¼ vðintAðNÞÞ ¼ vðNÞ;

showing that Sh satisfies e‰ciency.
2. Additivity of the Shapley value and the fact that

ðvA þ wAÞðEÞ ¼ vAðEÞ þ wAðEÞ ¼ vðintAðEÞÞ þ wðintAðEÞÞ

¼ ðvþ wÞðintAðEÞÞ ¼ ðvþ wÞAðEÞ;

for all E JN, imply that

Shiðv;AÞ þ Shiðw;AÞ ¼ ShiðvAÞ þ ShiðwAÞ ¼ ShiðvA þ wAÞ

¼ Shiððvþ wÞAÞ ¼ Shiðvþ w;AÞ;

showing that Sh satisfies additivity.
3. Let v be a monotone game and let i A N be such that vðEÞ ¼ 0 for all

E JNnfig. Algaba et al. (2000, Proposition 3) show that vA is monotone.
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Thus vAðEÞ ¼ vðintAðEÞÞa vðEÞ ¼ 0 for all E JNnfig. Since monotonicity
of vA also implies that vAðEÞb 0 for all E JN, it must hold that vAðEÞ ¼ 0
for all E JNnfig. For all j A N and e ¼ jEj this implies

Shiðv;AÞ ¼
X

fEJN:i AEg

ðe� 1Þ!ðn� eÞ!
n!

ðvAðEÞ � vAðEnfigÞÞ

b
X

fEJN:i; j AEg

ðe� 1Þ!ðn� eÞ!
n!

ðvAðEÞ � vAðEnfigÞÞ

b
X

fEJN:i; j AEg

ðe� 1Þ!ðn� eÞ!
n!

ðvAðEÞ � vAðEnf jgÞÞ

¼
X

fEJN: j AEg

ðe� 1Þ!ðn� eÞ!
n!

ðvAðEÞ � vAðEnf jgÞÞ

¼ Shjðv;AÞ;

showing that Sh satisfies the necessary player property.
4. The Shapley value satisfies the null player axiom (i.e., all null players

in a game earn a zero payo¤ ). Therefore it is su‰cient to prove that the
inessential players are just the null players in the restricted game. Let i be
an inessential player for A in v, and E a coalition such that i A E. Let F ¼
intAðEÞnintAðEnfigÞ. We show that i A P j for every j A F . Suppose there
exists j A F with i B P j. Then player i is not in any j-path. As j A intAðEÞ,
then there exists a j-path H contained in intAðEÞ in which player i is not, and
so H would be contained in Enfig. By definition of interior operator and since
paths are feasible coalitions in A we have that H would be contained in
intAðEnfigÞ and in particular j A intAðEnfigÞ. This gives a contradiction since
j A F . If F ¼ f j1; . . . ; jpg then

vAðEÞ � vAðEnfigÞ ¼ vðintAðEÞÞ � vðintAðEnfigÞÞ

¼ vðintAðEÞÞ � vðintAðEÞnF Þ

¼ vðintAðEÞÞ � vðintAðEÞnF Þ

þ
Xp�1

t¼1

½vðintAðEÞnf j1; . . . ; jtgÞ

� vðintAðEÞnf j1; . . . ; jtgÞ�

¼ 0;

since as i is inessential then every ji, i ¼ 1; . . . ; p is a null player in v. This
show that Sh satisfies the inessential player property.

5. Since v being monotone implies that vA is monotone we can establish
the following properties for j A N, i A Pj and v monotone:
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(i) vAðEÞ � vAðEnfigÞb 0, for all E JN.
(ii) Given E JN it is satisfied

intAðEnfigÞ ¼ 6
fF AA:FJEnfigg

F ¼ 6
fF AA:FJEnfi; jgg

F

J 6
fF AA:FJEnf jgg

F ¼ intAðEnf jgÞ;

and thus

vAðEÞ � vAðEnfigÞb vAðEÞ � vAðEnf jgÞ; for all E JN:

(iii) For every E JNnfig,

intAðEÞ ¼ 6
fF AA:FJEg

F ¼ 6
fF AA:FJEnf jgg

F ¼ intAðEnf jgÞ;

and thus

vAðEÞ � vAðEnf jgÞ ¼ 0; for all E JNnfig:

This implies that

Shiðv;AÞ ¼ ShiðvAÞ ¼
X

fEJN:i AEg

ðe� 1Þ!ðn� eÞ!
n!

ðvAðEÞ � vAðEnfigÞÞ

b
X

fEJN:i; j AEg

ðe� 1Þ!ðn� eÞ!
n!

ðvAðEÞ � vAðEnfigÞÞ

b
X

fEJN:i; j AEg

ðe� 1Þ!ðn� eÞ!
n!

ðvAðEÞ � vAðEnf jgÞÞ

¼
X

fEJN: j AEg

ðe� 1Þ!ðn� eÞ!
n!

ðvAðEÞ � vAðEnf jgÞÞ

¼ ShjðvAÞ ¼ Shjðv;AÞ:

The first inequality follows from (i), the second inequality from (ii), and the
first equality after the inequalities follows from (iii). This shows that Sh sat-
isfies structural monotonicity.

6. Let E A A be such that AnfEg is an antimatroid on N, and let
fi; jgJE. We establish the following properties:

(i) It follows from Derks and Peters (1992) that dvAðF Þ ¼ 0 for all F B A.
(ii) If F A A and F V fi; jg then F 0E.
(iii) If F V fi; jg then F VE, and thus T VE for all T JF . So,
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intAðTÞ ¼ 6
fH AA:HJTg

H ¼ 6
fH AAnfEg:HJTg

H

¼ intAnfEgðTÞ for all T JF :

Hence,

dvAðFÞ ¼
X

TJF

ð�1ÞjF j�jT jvAðTÞ ¼
X

TJF

ð�1ÞjF j�jT jvðintAðTÞÞ

¼
X

TJF

ð�1ÞjF j�jT jvðintAnfEgðTÞÞ ¼
X

TJF

ð�1ÞjF j�jT jvAnfEgðTÞ

¼ dvAnfEg ðFÞ:

Defining Ai ¼ fE A A : i A Eg it then follows that

Shiðv;AÞ � Shjðv;AÞ

¼
X

F AAi

dvAðF Þ
jF j �

X

F AAj

dvAðFÞ
jF j

¼
X

fF AAi : j BFg

dvAðFÞ
jF j �

X

fF AAj :i BFg

dvAðF Þ
jF j

¼
X

fF AAinfEg: j BFg

dvAðFÞ
jF j �

X

fF AAjnfEg:i BFg

dvAðFÞ
jF j

¼
X

fF A ðAnfEgÞi : j BFg

dvAnfEg ðFÞ
jF j �

X

fF A ðAnfEgÞj :i BFg

dvAnfEg ðFÞ
jF j

¼
X

F A ðAnfEgÞi

dvAnfEg ðFÞ
jF j �

X

F A ðAnfEgÞj

dvAnfEg ðFÞ
jF j

¼ Shiðv;AnfEgÞ � Shjðv;AnfEgÞ:

The first equality follows from (i), the third from (ii), and the fourth from (iii).
This shows that Sh satisfies fairness. r

The six axioms characterize the restricted Shapley value.

Theorem 2. A solution f for games on antimatroids is equal to the restricted
Shapley value Sh if and only if it satisfies e‰ciency, additivity, the necessary
player property, the inessential player property, structural monotonicity and
fairness.
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Proof. To prove uniqueness, suppose that solution f satisfies the six axioms.
Consider antimatroid A on N and the monotone game wT ¼ cT uT , cT b 0,
where uT is the unanimity game of T JN, i.e., wT ðEÞ ¼ cT if E KT , and
wTðEÞ ¼ 0 otherwise.

We show that f ðwT ;AÞ is uniquely determined by induction on jAj. (Note
that jAjb nþ 1 by A3 and A4).

If jAj ¼ nþ 1 then there is a unique coalition in A of cardinality i from
i ¼ 1 until i ¼ n. So, there exists a unique i-path for every player i. In this case,
Pi ¼ Pi for all i A N. We distinguish the following three cases with respect to
i A N:

(i) If i A T then the necessary player property implies that there exists a
c A R such that fiðwT ;AÞ ¼ c for all i A T , and fiðwT ;AÞa c for all i A NnT .

(ii) If i B T and there is no j A T such that i A P j then the inessential player
property implies that fiðwT ;AÞ ¼ 0.

(iii) If i B T and there is j A T such that i A P j ¼ Pj then structural monot-
onicity and case (i) imply that fiðwT ;AÞ ¼ c.

Now, setting PT ¼6
j AT

P j , e‰ciency implies that c ¼ cT=jPT j and then
f ðwT ;AÞ is uniquely determined.

Proceeding by induction assume that f ðwT ;A
0Þ is uniquely determined if

jA 0j < jAj. Notice that in general Pi 0Pi. Therefore, we can distinguish four
cases with respect to i A N, the same three cases as we consider before and
moreover, the following case:

(iv) Let i B T such that there exists j A T with i A P j and there is no j A T
with i A Pj . Consider then j A T with i A P jnPj. Then there exists a j-path
E 0N such that i A E, and there exists a j-path F 0N such that i B F .
We define a chain from coalition E to N to be a sequence of coalitions
ðE0;E1; . . . ;EtÞ satisfying E0 ¼ E, Et ¼ N and there is a sequence of distinct
players ðh1; . . . ; htÞ such that hk A NnEk�1 and Ek ¼ Ek�1 W fhkg for all
k A f1; . . . ; tg. If all coalitions in the chain belong to the antimatroid A it is
called a chain in A. The augmentation property implies that there exist chains
in A from E to N and from F to N. We choose a chain from E to N and a
chain from F to N in such a way that the first common coalition M of these
chains is the largest coalition possible, i.e., there are no other two chains
from E and F to N with a first larger common coalition M 0IM. (Note that a
first common coalition always exists because coalition N is always a common
coalition). Our goal is to find a coalition containing i and j and, under the
conditions of Lemma 1 to apply the fairness axiom. If H A A, jHj ¼ jEj þ 1,
H IE imply that H is not a path in A, then define A 0 ¼AnfEg. By
Lemma 1 A 0 is an antimatroid. Otherwise, i.e., if there is a path E1 A A,
jE1j ¼ jEj þ 1, E1 IE, it can happen that H A A, jHj ¼ jE1j þ 1, H IE1

imply that H is not a path in A. Then define A 0 ¼AnfE1g. In case this
does not occur we can proceed in this way, and thus choose a sequence of
coalitions labeled by E1;E2; . . . ;Em being paths in A and such that if H A A,
jHj ¼ jEmj þ 1, H IEm then H is not a path in A. In this process as maxi-
mum we would get to a path Em with jEmj ¼ jMj � 1;M IEm. There cannot
exist any coalition Q A A, Q0M, jQj ¼ jEmj þ 1, QIEm, because if there
would be such a coalition Q then the chain chosen from F to N and this
alternative chain from E to N through Q would have a larger first common
coalition. So, taking A 0 ¼AnfEmg and applying Lemma 1, A 0 is an anti-
matroid. In any case, by fairness and taking into account that j A T it follows
with case (i) that
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fiðwT ;AÞ ¼ fjðwT ;AÞ � fjðwT ;A
0Þ þ fiðwT ;A

0Þ ¼ c� ci; ð1Þ

with ci ¼ fiðwT ;A
0Þ � fjðwT ;A

0Þ already determined by the induction hypoth-
esis (note that as f satisfies fairness we can state that ci is independent of the
coalition Em deleted to obtain A 0). To determine c we apply the e‰ciency
axiom

cjPT j �
X

i APTnPT

ci ¼ cT ;

where PT ¼6
j AT

P j and PT ¼6
j AT

Pj . By the induction hypothesis all ci

in the last sum are determined, and so is c. But then f ðwT ;AÞ is uniquely
determined by equation (1).

Above we showed that f ðwT ;AÞ is uniquely determined for all (mono-
tone) games wT ¼ cT uT with cT b 0. Suppose that wT ¼ cT uT with cT < 0.
(Then wT is not monotone and the necessary player property and structural
monotonicity cannot be applied). Let v0 A GN denote the null game, that
is, v0ðEÞ ¼ 0 for all E JN. From the inessential player property it follows
that fiðv0;AÞ ¼ 0 for all i A N. Since �wT ¼ �cT uT with �cT b 0, and
ðv0ÞA ¼ ðwTÞA þ ð�ðwTÞAÞ, it follows from additivity of f and the fact that
�wT is monotone that f ðwT ;AÞ ¼ f ðv0;AÞ � f ð�wT ;AÞ ¼ �f ð�wT ;AÞ is
uniquely determined. So, f ðcT uTÞ is uniquely determined for all cT A R.
Since every cooperative game v on N can be expressed as a linear combina-
tion of unanimity games it follows with additivity that f ðv;AÞ is uniquely
determined. r

We end this section by showing logical independence of the six axioms
stated in Theorem 1.

1. The solution g defined in the proof of Theorem 4 (see next section) sat-
isfies e‰ciency, additivity, the inessential player property, the necessary player
property and structural monotonicity. It does not satisfy fairness.

2. The solution given by f ðv;AÞ ¼ ShðvÞ satisfies e‰ciency, additivity, the
inessential player property, the necessary player property and fairness. It does
not satisfy structural monotonicity.

3. For antimatroid A on N, let BðAÞ ¼ fi A N : fig A Ag be the set of
atoms in A. Define ~ff ðv;AÞ ¼

P
TJN dvðTÞ ~ff ðuT ;AÞ with

~ffiðuT ;AÞ ¼

8
><

>:

1

jT WBðAÞj if i A T WBðAÞ;

0 otherwise:

This solution satisfies e‰ciency, additivity, the inessential player property,
structural monotonicity and fairness. It does not satisfy the necessary player
property.

4. The egalitarian solution, fiðv;AÞ ¼ vðNÞ=jNj for all i A N, satisfies e‰-
ciency, additivity, the necessary player property, structural monotonicity and
fairness. It does not satisfy the inessential player property.

5. Let u�T be the dual of the unanimity game of coalition T JN, i.e.,
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u�T ðEÞ ¼ uTðNÞ � uTðNnEÞ ¼
1 if E XT 0q;

0 otherwise.

�

Now, let the solution f be given by

fiðv;AÞ ¼
~ff ðv;AÞ if v ¼ u�T ; jT jb 2;

Shðv;AÞ otherwise,

�

with ~ff as given above (see 3). This solution satisfies e‰ciency, the inessential
player property, the necessary player property, structural monotonicity and
fairness. It does not satisfy additivity.

6. The zero solution given by fiðv;AÞ ¼ 0 for all i A N satisfies addi-
tivity, the inessential player property, the necessary player property, struc-
tural monotonicity and fairness. It does not satisfy e‰ciency.

4 Poset antimatroids

In Section 2 we referred to the fact that every set of conjunctive feasible
coalitions for some permission structure S is a poset antimatroid. Van den
Brink and Gilles (1996) gave an axiomatization of the conjunctive permission
value where conjunctive fairness and structural monotonicity for games with a
permission structure (see van den Brink, 1999) are replaced by a stronger
structural monotonicity axiom. Unlike the characterizations of the permission
values, to characterize the restricted Shapley value for games on poset anti-
matroids without fairness we need not strengthen structural monotonicity.
Deleting fairness from the set of axioms stated in Theorem 2 characterizes the
restricted Shapley value for games on poset antimatroids. Moreover, poset
antimatroids are the unique antimatroids for which it is possible to delete the
fairness axiom.

Poset antimatroids are the unique antimatroids such that every player has
a unique path. In particular, we can conclude that given an antimatroid A on
N, then A is a poset antimatroid if and only if Pi ¼ Pi for all i A N.

Theorem 3. A solution f for games on poset antimatroids is equal to the

restricted Shapley value Sh if and only if it satisfies e‰ciency, additivity, the
necessary player property, the inessential player property and structural monot-
onicity.

Proof. From Theorem 1 it follows that Sh satisfies the five axioms. Suppose
that solution f satisfies the five axioms on poset antimatroids. Consider a poset
antimatroid A on N and the game wT ¼ cT uT , cT b 0. Taking into account
that for a poset antimatroid P j ¼ Pj for all j A N, we only have to consider
the first three cases from Theorem 2 with respect to i A N. Hence, e‰ciency
implies that c ¼ cT=jPT j. Therefore f ðwT ;AÞ is uniquely determined. For
arbitrary v it follows that f ðv;AÞ is uniquely determined in a similar way as
in the proof of Theorem 2. r

The last five solutions given at the end of the previous section show logical
independence of the axioms stated in Theorem 3. For games on poset anti-
matroids the restricted Shapley value can be written as follows.
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Proposition 1. If A is a poset antimatroid on N then

Shiðv;AÞ ¼
X

fTJN:i APTg

dvðTÞ
jPT j :

Proof. Since dvðEÞ ¼ 0 for every E B A it follows that

Shiðv;AÞ ¼
X

E AAi

dvAðEÞ
jEj ¼

X

E AAi

P
fTJE:E¼P Tg dvðTÞ

jEj ¼
X

fTJN:i APTg

dvðTÞ
jPT j :

r

We can characterize the class of games on poset antimatroids as the class
of games on which the restricted Shapley value satisfies the five axioms of
Theorem 3. Above we considered the restricted Shapley value Sh which assigns
the payo¤ distribution Shðv;AÞ A Rn to every cooperative game v and anti-
matroid A on N. Given an antimatroid A on N, let Shð� ;AÞ be the function
that assigns to every cooperative game v on N the restricted Shapley value
Shðv;AÞ. Defining the axioms of Theorem 3 for solutions f ð� ;AÞ in a
straightforward way we give the following result.

Theorem 4. Let A be an antimatroid on N. Then A is a poset antimatroid
if and only if Shð� ;AÞ is the unique solution satisfying e‰ciency, additivity,
the necessary player property, the inessential player property and structural
monotonicity.

Proof. From Theorem 3 it follows that given a poset antimatroid A, Shð� ;AÞ
is the unique solution satisfying e‰ciency, additivity, the necessary player
property, the inessential player property and structural monotonicity. Suppose
that A is not a poset antimatroid. Define the solution g for games on anti-
matroids by

giðuT ;AÞ ¼
1

jPT j
if i A PT ¼6

i AT
Pi;

0 otherwise,

8
><

>:

and for arbitrary game v

giðv;AÞ ¼
X

TJN

dvðTÞgiðuT ;AÞ ¼
X

fTJN:i APTg

dvðTÞ
jPT j

:

This solution satisfies e‰ciency, additivity, the necessary player property, the
inessential player property and structural monotonicity.

To prove that gð� ;AÞ0Shð� ;AÞ note that, if A is not a poset antimatroid
then there exists a j A N with P j 0Pj. By Proposition 1 it then follows that
gðuT ;AÞ0ShðuT ;AÞ if j B T and ðP jnPjÞXT 0q. r

62 E. Algaba et al.



An acyclic permission structure S is a permission forest structure if
jS�1ðiÞja 1 for all i A N. So, in a permission forest structure every player has
at most one predecessor. A permission forest structure is a permission tree
structure if there is exactly one player i0 for which S�1ði0Þ ¼q. Algaba et al.
(2000, Lemma 2) showed that the permission forest structures are exactly those
acyclic permission structures for which the sets of conjunctive and disjunctive
feasible coalitions coincide. We also showed that the poset antimatroids sat-
isfying the path property are exactly those antimatroids that can be obtained
as the set of conjunctive or disjunctive feasible coalitions of some permission
forest structure. From Theorem 4 we directly obtain a characterization of the
Shapley value restricted to the class of poset antimatroids satisfying the path
property, i.e., antimatroids that are obtained as the feasible coalitions for per-
mission forest or tree structures. This result is interesting from an economic
point of view since in economic theory we often encounter hierarchical struc-
tures that can be represented by forests or trees.

Corollary 1. Let A be a poset antimatroid on N satisfying the path property.

Then Shð� ;AÞ is the unique solution satisfying e‰ciency, additivity, the neces-
sary player property, the inessential player property and structural monoto-
nicity.

5 An application: auction situations

In the previous sections we mentioned that both the conjunctive and disjunc-
tive permission value for games with a permission structure are characterized
by applying the axioms defined in this paper to the specific classes of poset
antimatroids and antimatroids satisfying the path property, respectively. We
also indicated that Algaba et al. (2000) showed that an antimatroid can be the
conjunctive feasible coalition set of some permission structure as well as the
disjunctive feasible coalition set if and only if it is a poset antimatroid satisfy-
ing the path property. A special class of such antimatroids are the feasible sets
of peer group situations as considered in Brânzei, Fragnelli and Tijs (2002). In
fact, they consider games with an acyclic permission structure ðN; v;SÞ with
jS�1ðiÞja 1 for all i A N. The games v assign zero dividends to all coalitions
that are not paths. With acyclicity of the permission structure there is exactly
one player, the root i0, such that S�1ði0Þ ¼q. The restricted peer group game
then coincides with the (conjunctive or disjunctive) restricted game vF c

S
¼ vF d

S

arising from this game with permission (tree) structure. Given that all coali-
tions that are not paths get a zero dividend, the restricted game is equal to
the game itself, i.e., v ¼ vF c

S
¼ vF d

S
. (Note that the same restricted game is

obtained if we consider the game that assigns to every player i the dividend of
its path Pi.) Defining e‰ciency, additivity, the necessary player property the
inessential player property and structural monotonicity restricted to this class,
it is shown in van de Brink (1997) that these axioms characterize the restricted
Shapley value on this class.

As argued by Brânzei et al. (2002) peer group situations generalize some
other situations such as sealed bid second price auction situations (see Ras-
musen, 1994). Consider a seller of an object who has a reservation value r b 0,
and a set N ¼ f1; . . . ; ng of n bidders. Each bidder has a valuation wi b r
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for the object. Assume that the bidders are labelled such that w1 > � � � > wn.
Using dominant bidding strategies for such auction situations Brânzei et al.
(2002) define the corresponding peer group situation that can be represented
as the game with permission (tree) structure ðN; v;SÞ with SðiÞ ¼ fi þ 1g
for 1 a i a n� 1, SðnÞ ¼q, and the game v determined by the dividends
dvðf1; . . . ; igÞ ¼ wi � wiþ1 if 1 a i a n� 1 and dvðNÞ ¼ wn � r. All other
coalitions have a zero dividend, dvðTÞ ¼ 0 for all T B A. Clearly these games
are determined by the vector of valuations ðw; rÞ A Rnþ1

þ . Given such a
valuation vector let Shðw; rÞ denote the restricted Shapley value of the
corresponding game on the antimatroid A ¼ fq; f1g; f1; 2g; . . . ; f1; 2; . . .
n� 1g;Ng. Allowing the strict inequalities to be weak inequalities
w1 b � � �b wn, applying the axioms stated above to these situations yields
that e‰ciency straightforward says that

P
i AN fiðw; rÞ ¼ w1 � r. The ines-

sential player property states that fiðw; rÞ ¼ 0 if wi ¼ r. Structural monoto-
nicity states that fiðw; rÞb fjðw; rÞ if wi b wj. Specifying additivity we must
take care that the underlying permission structure does not change. So, we
require additivity only for reservation value vectors that ‘preserve the order of
players’, i.e., f ðwþ z; rþ sÞ ¼ f ðw; rÞ þ f ðz; sÞ if wi b wj , zi b zj. We refer
to this as additivity over order preserving valuations. Finally, we can give a
characterization of the restricted Shapley value for auction situations without
using the necessary player property.

Theorem 5. The restricted Shapley value Shðw; rÞ is the unique solution for auc-
tion situations ðw; rÞ A Rnþ1

þ satisfying e‰ciency, the inessential player property,
structural monotonicity and additivity over order preserving valuations. More-
over,

Shiðw; rÞ ¼
wi

i
�
Xn

h¼iþ1

wh

hðh� 1Þ �
r

n
:

Proof. It follows from Corollary 1 that Shðw; rÞ satisfies these axioms. It also
follows that the axioms of this corollary characterize Shðw; rÞ for auction sit-
uations. However, we have to prove that we do not have to use the necessary
player property and need additivity only over order preserving valuations.
Suppose that f is a solution for auction situations that satisfies the axioms,
and let ðw; rÞ A Rnþ1

þ be an auction situation. For h ¼ 1; . . . ; n� 1 define the
auction situation ðwh; 0Þ by wh

i ¼ wh � whþ1 for all i A f1; . . . ; hg, wh
i ¼ 0 for

all i A fhþ 1; . . . ; ng, and define ðwn; rÞ by wn
i ¼ wn for all i A f1; . . . ; ng. Let

h A f1; . . . ; n� 1g. The inessential player property implies that fiðwh; 0Þ ¼ 0
for all i A fhþ 1; . . . ; ng. Structural monotonicity implies that all fiðwh; 0Þ are
equal for all i A f1; . . . ; hg, i.e., fiðwh; 0Þ ¼ ch, 1 a i a h for some ch A R.
Similarly, structural monotonicity implies that fiðwn; rÞ ¼ cr, i A N, for some

cr A R. E‰ciency then determines uniquely that ch ¼
wh

h
and cr ¼

wn � r

n
.

Since all ðwh; 0Þ, h ¼ 1; . . . ; n� 1, and ðwn; rÞ are order preserving, additivity
over order preserving valuations determines f ðw; rÞ.

Let ðw; rÞ A Rnþ1
þ be an auction situation. Then its corresponding poset

antimatroid is A ¼ fq; f1g; . . . ; f1; 2; . . . ; n� 1g;Ng. It follows from Prop-
osition 1 that
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Shiðw; rÞ ¼
X

fTJN:i APTg

dvðTÞ
jPT j

¼ wi � wiþ1

i
þ
Xn�1

h¼iþ1

wh � whþ1

h
þ wn � r

n

¼ wi

i
�
Xn

h¼iþ1

wh

hðh� 1Þ �
r

n
: r

From the proof of the above theorem it follows that structural monoto-
nicity could be replaced by symmetry stating that fiðw; rÞ ¼ fjðw; rÞ if wi ¼ wj.
Note that this cannot be done in more general cases as discussed earlier in the
paper. Moreover, the inessential player property can be weakened by saying
that fiðw; rÞ ¼ 0 if wi ¼ 0. In a similar way we can characterize solutions for
other economic situations such as airport games or hierarchically structured
firms.
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